98%
921
2 minutes
20
In the absence of ligand, CsCO-promoted cross-coupling reaction of arenes with cyano-/nitro-substituted aryl halides in DMSO affording biaryls is reported. The cyano/nitro group in biaryls is useful and convenient for further transformation. The formation of dibenzofurans resulting from the reactions between arenes and 1-bromo-2-iodobenzene is also reported. On the basis of control experiments and theoretical studies, a radical mechanism is proposed for the formation of biaryls.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223439 | PMC |
http://dx.doi.org/10.1021/acsomega.1c01736 | DOI Listing |
J Org Chem
September 2025
State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
The -di(2-pyridyl)arenes, featuring a unique structure, hold significant promise for applications in fluorescent probes, synthetic nanoparticle stabilizers, and chemical synthesis. The mechanism of Ru-catalyzed decarboxylation and heteroarylation reactions of aryl carboxylic acids to access -dipyridylarenes was elucidated using DFT calculations, which involved C-H bond activation, oxidative addition, reductive elimination, and decarboxylation processes to form -di(2-pyridyl)arenes. The rate-determining step of the reaction is the second reductive elimination step with an energy barrier of 27.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan China.
Maximizing the exposure of edge sites and achieving sufficient promotion remain arduous tasks for designing efficient bimetallic MoS-based catalysts. Herein, ultrathin CoMoS nanosheets vertically grown on reduced graphene oxide (CoMoS/rGO-DMF) were fabricated by a facile one-pot solvothermal method using dimethylformamide (DMF) as solvent. The vertically aligned structure and good Co promotion endow CoMoS/rGO-DMF with abundant Co-Mo-S active sites and excellent catalytic performance in the hydrodeoxygenation (HDO) reaction.
View Article and Find Full Text PDFEur J Pharm Sci
September 2025
Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary. Electronic address:
Platinum-group metal half-sandwich complexes are considered to be potential replacements of the clinically widely used platins which have several side effects and tend to cause resistance to develop. In our previous works, we used a range of 2-pyridyl-substituted N- and C-glycosyl heterocycles as N,N-chelating ligands to prepare ruthenium(II), osmium(II), iridium(III) and rhodium(III) polyhapto arene/arenyl half-sandwich complexes. Some of these complexes, particularly with the C-glucopyranosyl isoxazole derived ligand in its O-perbenzoylated form, exhibited greater anticancer efficiency than cisplatin and had minimal or negligible effects on non-transformed fibroblasts.
View Article and Find Full Text PDFOrg Lett
September 2025
School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
Here, intramolecular hydrogen bond (IMHBs)-induced rigidity is used for the first time to synthesize macrocyclic arenes. Calix[]azanediyldibenzoates (C[]A, where = 3, 4, or 5) are synthesized through a one-step condensation reaction between dimethyl 2,2'-azanediyldibenzoate and paraformaldehyde. Compared to the monomer, the macrocycles exhibit a fast and significant acidochromic response due to the intramolecular charge transfer that is boosted by the synergistic effect of their adsorption and protonation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany.
Nickel electrocatalysis has emerged as a powerful strategy for sustainable C─H activation, offering an environmentally benign alternative to traditional methods based on stoichiometric oxidants. We, herein, report a nickela-electrocatalyzed approach for the expedient synthesis of β-arylated pyrroles via a unique multiple dehydrogenative C─H activation approach. Hence, direct C─C bond formation between pyrroles and arenes was enabled, obviating the need for prefunctionalized substrates.
View Article and Find Full Text PDF