Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Development of white organic light-emitting diodes based on purely thermally activated delayed fluorescence with a single-emissive-layer configuration has been a formidable challenge. Here, we report the rational design of a donor-acceptor energy-relaying exciplex and its utility in fabricating single-emissive-layer, thermally activated delayed fluorescence-based white organic light-emitting diodes that exhibit 100% internal quantum efficiency, 108.2 lm W power efficiency, and 32.7% external quantum efficiency. This strategy enables thin-film fabrication of an 8 cm × 8 cm thermally activated delayed fluorescence white organic light-emitting diodes (10 inch) prototype with 82.7 lm W power efficiency and 25.0% external quantum efficiency. Introduction of a phosphine oxide-based acceptor with a steric group to the exciplex limits donor-acceptor triplet coupling, providing dual levels of high-lying and low-lying triplet energy. Transient spectroscopic characterizations confirm that a ladder-like energy relaying occurs from the high-lying triplet level of the exciplex to a blue emitter, then to the low-lying triplet level of the phosphine oxide acceptor, and ultimately to the yellow emitter. Our results demonstrate the broad applicability of energy relaying in multicomponent systems for exciton harvesting, providing opportunities for the development of third-generation white organic light-emitting diode light sources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206214PMC
http://dx.doi.org/10.1038/s41467-021-23941-zDOI Listing

Publication Analysis

Top Keywords

quantum efficiency
16
white organic
16
organic light-emitting
16
light-emitting diodes
12
thermally activated
12
activated delayed
12
energy-relaying exciplex
8
100% internal
8
internal quantum
8
delayed fluorescence
8

Similar Publications

Background: Recent advancements in cancer therapeutics have catalyzed the development of noninvasive treatment modalities, including the utilization of fluorescent chemotherapeutic agents. These agents offer dual functionality, enabling targeted drug delivery, real-time tumor imaging, and personalized therapy monitoring. Such capabilities are instrumental in the progression toward more precise and effective cancer interventions.

View Article and Find Full Text PDF

Mn-doped carbon dots-based fluorescent-colorimetric dual-mode probes for selective and sensitive detection of Cr(VI) ions and l-ascorbic acid via smartphone-integrated analytical platform.

Anal Chim Acta

November 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:

Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.

View Article and Find Full Text PDF

Dual sulfur sources redox dynamics guided growth of 〈hk1〉-oriented SbS microrods: lattice strain modulation for ultra-low dark current.

J Colloid Interface Sci

September 2025

College of Physics and Electronic Information, Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming 650500, China. Electronic address:

Antimony trisulfide (SbS) has emerged as a promising inorganic semiconductor for optoelectronics due to its distinctive anisotropic crystal structure and suitable bandgap (∼1.7 eV). While hydrothermal synthesis remains challenging for achieving high crystallinity and controlled morphology, we developed an innovative dual‑sulfur precursor strategy utilizing sodium thiosulfate (STS) and thioacetamide (TAA) at a 7:2 M ratio with SbCl.

View Article and Find Full Text PDF

Solid lipid nanoparticles in imaging, diagnostics and theranostics: A review of a decade of innovations and clinical applications.

Colloids Surf B Biointerfaces

September 2025

Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA. Electronic address:

The clinical demand for safer, more precise, and functionally versatile imaging tools has intensified with the increasing complexity of disease diagnosis and management. Despite major strides in imaging technologies such as MRI, CT, USG, and PET/SPECT, many modalities are grappled by issues including low specificity, high systemic toxicity of contrast agents, and limited ability to provide real-time functional data. Dreaded by these shortcomings, nanotechnology-based approaches such as liposomes, quantum dots (QDs), polymeric nanoparticles (NPs), gold NPs, lipid NPs, and metallic NPs have emerged as promising alternatives.

View Article and Find Full Text PDF

A new variety of nitrogen-doped carbon dots (NCDs) was produced using a hydrothermal synthesis method, based on propanedioic acid and barbituric acid as the sources of carbon and nitrogen. The NCDs were analyzed by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Zeta Potential,X-ray Diffraction(XRD),Thermogravimetry-Derivative Thermogravimetry(TG-DTG),Fourier transform infrared spectroscopy (FTIR) and Fluorescence Lifetime. The characterization results indicate that NCDs possess an average diameter of approximately 2.

View Article and Find Full Text PDF