An iron oxide nanoparticle-based transdermal nanoplatform for dual-modal imaging-guided chemo-photothermal therapy of superficial tumors.

Acta Biomater

Hefei National Lab for Physical Sciences at the Microscale and Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China. Electronic address:

Published: August 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transdermal delivery is an attractive strategy for treating superficial tumors. However, the applications of existing transdermal systems have been limited by low transdermal efficiency and poor therapeutic outcomes. Here, we develop a transdermal nanoplatform (+)T-SiDs, based on superparamagnetic iron oxide core, surface-modified with cationic lipids, transdermal enhanced peptide TD, and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR), and loaded with doxorubicin. The (+)T-SiDs compositions enable MR/NIR dual-modal imaging guided synergistic chemo-photothermal therapy to superficial tumors treatment via transdermal delivery. The (+)T-SiDs exhibit good stability, efficient cellular uptake, pH/photothermal responsive drug release, and high photothermal conversion efficiency (47.45%). Importantly, the transdermal delivery of (+)T-SiDs is significantly enhanced by TD functionalization. In vivo MR/NIR imaging shows that the (+)T-SiDs exhibit high transdermal efficiency and specificity in localization to the tumor site. Moreover, in comparison with individual chemo- or photothermal therapies, the combination of chemo-photothermal therapy exhibits more efficient tumor inhibition effects. This work presents a new transdermal treatment nanoplatform for dual-modal imaging-guided chemo-photothermal therapy of superficial tumors, with efficient tumor eradication and low systemic toxicity thus offering strong potential for clinical adoption. STATEMENT OF SIGNIFICANCE: Transdermal delivery is an attractive strategy for treating superficial tumors. However, a highly efficient transdermal nanoplatform remains to be developed. Herein, we designed a multifunctional transdermal nanoplatform for dual-modal imaging-guided chemo-photothermal therapy of superficial tumors, comprised of a super-paramagnetic iron oxide (SPIO) nanoparticle, which can act as an MRI contrast agent and photothermal agent; a transdermal enhanced peptide (TD) and cationic lipids, which can accelerate skin penetration; and a NIR dye (DiR) and doxorubicin (DOX), which can achieve a synergistic enhanced chemo-photothermal therapy with NIR imaging ability. The transdermal nanoplatform achieved efficient tumor eradication and low systemic toxicity, thus offering strong potential for clinical adoption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2021.05.033DOI Listing

Publication Analysis

Top Keywords

chemo-photothermal therapy
24
superficial tumors
24
transdermal nanoplatform
20
therapy superficial
16
transdermal delivery
16
transdermal
15
iron oxide
12
nanoplatform dual-modal
12
dual-modal imaging-guided
12
imaging-guided chemo-photothermal
12

Similar Publications

A host/guest assembled hyaluronic acid-based supramolecular hydrogel with NIR-steered degradation capacity for enhanced tumor therapy through programmable drug release.

Carbohydr Polym

November 2025

Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan Un

Recently, a variety of stimulus-responsive hydrogel platforms have been developed, specifically designed to respond to changes in physiological signals within the disease microenvironment. However, due to the restricted regulation of drug release behavior in vivo by such hydrogel systems, the precise control of drug release kinetics has not been achieved. Therefore, developing precise drug delivery platforms that enable programmable and "on-off" delivery remains a challenge in this field.

View Article and Find Full Text PDF

This study reports the synthesis and characterization of an injectable nano-hydrogel composite (m@NPs-HG) based on selenium nanoparticles (Se NPs) and carboxymethyl chitosan (CMCS) nanoparticles for enhanced cancer therapy. Selenium nanoparticles were stabilized using CMCS to form copper selenide nanoparticles (CSe NPs), while doxorubicin (DOX)-loaded CMCS nanoparticles (CD NPs) were encapsulated within cancer cell membranes to generate biomimetic nanoparticles (m@NPs). Subsequently, CSe NPs and m@NPs were integrated into a hydrogel via crosslinking with CuCl, resulting in the formation of m@NPs-HG.

View Article and Find Full Text PDF

Chemophotothermal Combined Therapy with 5-Fluorouracil and Branched Gold Nanoshell Hyperthermia Induced a Reduction in Tumor Size in a Xenograft Colon Cancer Model.

Pharmaceutics

July 2025

Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad de Biotecnología Médica y Farmacéutica, Laboratorio de Investigación Traslacional de Terapias Contra el Cáncer, Guadalajara 44270, Mexico.

: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can be effective and localized. The combination of chemotherapy and hyperthermia is promising.

View Article and Find Full Text PDF

Lung cancer remains one of the most widespread and difficult-to-treat malignancies, with current treatments approaches often lacking specificity and resulting in significant off-target toxicity. Nanoparticle-based drug delivery systems (DDS) have emerged as a promising strategy to overcome these limitations. Hexagonal boron nitrides (h-BN) nanoparticles (NPs) have gained attention due to their high photothermal (PT) conversion efficiency and versatile surface functionalization capabilities, making them attractive candidates for targeted cancer therapy.

View Article and Find Full Text PDF