A multifunctional UiO-66@carbon interlayer as an efficacious suppressor of polysulfide shuttling for lithium-sulfur batteries.

Nanotechnology

Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.

Published: June 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Restraining the shuttle effect in lithium-sulfur (Li-S) battery is crucial to realize its practical application. In this work, a UiO-66@carbon (UiO-66@CC) interlayer was developed for Li-S battery by growing a continuous UiO-66 film on carbon cloth. The continuous UiO-66 crystal layer contributes to provide sufficient adsorptive and catalytic sites for efficient adsorption and catalytic conversion towards polysulfides. Moreover, the hydrophilic property of UiO-66 material ensures the full infiltration of electrolyte and accelerates the transportation of lithium ions. Profiting from the above advantages of the proposed interlayer, the shuttle effect is effectively inhibited and a fast redox kinetic is also realized. Accordingly, the Li-S battery using UiO-66@CC delivers a specific capacity of 1228.9 mAh gat 0.2 C with a nearly 100% capacity retention after 100 cycles, and the first specific capacity is 1033.1 mAh gat 1.0 C with a decay rate of 0.07% over 600 cycles. Meanwhile, UiO-66@CC interlayer also has an excellent rate performance with a specific capacity of 535.9 mAh gat 5.0 C and a high area capacity of 6.2 mAh cmat increased sulfur loading (8.15 mg cm).

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac06f7DOI Listing

Publication Analysis

Top Keywords

li-s battery
12
specific capacity
12
mah gat
12
uio-66@cc interlayer
8
continuous uio-66
8
capacity
5
multifunctional uio-66@carbon
4
interlayer
4
uio-66@carbon interlayer
4
interlayer efficacious
4

Similar Publications

Lithium-sulfur batteries (LSBs) hold great potential as next-generation energy storage systems due to their high theoretical energy density and relatively low cost. However, their practical application is hindered by issues such as the shuttle phenomenon caused by soluble lithium polysulfides (LiPSs), slow redox reaction rates, and unsatisfactory cycling stability. In this study, novel conjugated metal-organic frameworks, MM″(HHTP) (M, M″ = Ni, Co, Cu) is reported, as a functional coating on polypropylene (PP) separators.

View Article and Find Full Text PDF

Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.

View Article and Find Full Text PDF

A solid-state battery capable of 180 C superfast charging and 100% energy retention at -30 °C.

Proc Natl Acad Sci U S A

September 2025

Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.

Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.

View Article and Find Full Text PDF

Ultrathin Amorphous Iron Oxide Nanosheets for Improving the Electrochemical Performance of Li-S Batteries.

Langmuir

September 2025

Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Normal University, Wuhu 241000, China.

The sluggish kinetics and diffusion of lithium polysulfide (LiPS) intermediates lead to the decline in the capacity and rate of high-energy lithium-sulfur (Li-S) batteries. Integrating adsorbents and electrocatalysts into the Li-S system is an effective strategy for suppressing the polysulfide shuttle and enhancing the redox kinetics of sulfur species. The disordered structure of the electrocatalysts exhibits significantly enhanced catalytic activity.

View Article and Find Full Text PDF

The polysulfide shuttling and sluggish sulfur redox kinetics hinder the commercialization of lithium-sulfur (Li-S) batteries. Herein, the fabrication of phosphorus (P)-doped iron telluride (FeTe) nanoparticles with engineered Te vacancies anchored on nitrogen (N)-doped carbon (C) (P-FeTe@NC) is presented as a multifunctional sulfur host. Theoretical and experimental analyses show that Te vacancies create electron-deficient Fe sites, which chemically anchor polysulfides through enhanced Fe─S covalent interactions.

View Article and Find Full Text PDF