98%
921
2 minutes
20
The pathophysiology of sickle cell disease (SCD) is driven by chronic inflammation fueled by damage associated molecular patterns (DAMPs). We show that elevated cell-free DNA (cfDNA) in patients with SCD is not just a prognostic biomarker, it also contributes to the pathological inflammation. Within the elevated cfDNA, patients with SCD had a significantly higher ratio of cell-free mitochondrial DNA (cf-mtDNA)/cell-free nuclear DNA compared with healthy controls. Additionally, mitochondrial DNA in patient samples showed significantly disproportionately increased hypomethylation compared with healthy controls, and it was increased further in crises compared with steady-state. Using flow cytometry, structured illumination microscopy, and electron microscopy, we showed that circulating SCD red blood cells abnormally retained their mitochondria and, thus, are likely to be the source of the elevated cf-mtDNA in patients with SCD. Patient plasma containing high levels of cf-mtDNA triggered the formation of neutrophil extracellular traps (NETs) that was substantially reduced by inhibition of TANK-binding kinase 1, implicating activation of the cGAS-STING pathway. cf-mtDNA is an erythrocytic DAMP, highlighting an underappreciated role for mitochondria in sickle pathology. These trials were registered at www.clinicaltrials.gov as #NCT00081523, #NCT03049475, and #NCT00047996.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176765 | PMC |
http://dx.doi.org/10.1182/blood.2020009063 | DOI Listing |
J Genet
September 2025
College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
The family Syngnathidae includes seahorses, sea dragons, and pipefishes. We sequenced the complete mitochondrial DNA (mtDNA) genome of the belly pipefish, Bleeker, 1849. The genome is 16,646-bp long, and includes the standard complement for bony fishes of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a control region, in the same order and strand distribution as other syngnathids.
View Article and Find Full Text PDFFront Genet
August 2025
Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Background: Prostatic diseases, consisting of prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer (PCa), pose significant health challenges. While single-omics studies have provided valuable insights into the role of mitochondrial dysfunction in prostatic diseases, integrating multi-omics approaches is essential for uncovering disease mechanisms and identifying therapeutic targets.
Methods: A genome-wide meta-analysis was conducted for prostatic diseases using the genome-wide association studies (GWAS) data from FinnGen and UK Biobank.
Bioact Mater
December 2025
Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China.
Mitochondrial DNA (mtDNA) functions as an endogenous danger-associated molecular pattern that broadly activates the cGAS-STING pathway to potentiate antitumor immunotherapy. However, inefficient mtDNA release severely limits its ability to robustly activate downstream immune responses. Recent studies reveal that ferroptosis can trigger mtDNA release from damaged mitochondria into the cytosol, thereby stimulating antitumor immunity.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, Republic of Korea.
Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China.
Introduction: The pathological mechanism of sepsis-related acute lung injury (ALI) is closely linked to mitochondrial dysfunction and pyroptosis. Although low-dose extracorporeal shock wave (SW) therapy has been widely utilized in tissue and organ injury repair, its role in sepsis-related ALI remains unclear. This study aimed to elucidate the regulatory mechanisms of SW on mitochondrial pyroptosis crosstalk in septic ALI.
View Article and Find Full Text PDF