98%
921
2 minutes
20
Recently, there has been significant interest in the influences of the human gut microbiota on many diseases, such as cardiovascular disease (CVD) and metabolic disorders. Trimethylamine N-oxide (TMAO) is one of the most frequently discussed gut-derived metabolites. Dried blood spot (DBS) sampling has been regarded as an attractive alternative sampling strategy for clinical studies and offers many advantages. For DBS sample processing, whole-spot analysis could minimize hematocrit-related bias, but it requires blood volume calibration. This study developed a method combining matrix-induced ion suppression (MIIS) with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) to estimate blood volume and quantify TMAO and its precursors and derivatives, including choline, carnitine and acetylcarnitine, in DBSs. The MIIS method used an ion suppression indicator (ISI) to measure the extent of ion suppression caused by the blood matrix, which was related to the blood volume. The results showed that the volume estimation accuracy of the MIIS method was within 91.7-109.7%. The combined MIIS and LC-MS/MS method for quantifying TMAO, choline, carnitine and acetylcarnitine was validated in terms of linearity, precision and accuracy. The quantification accuracy was within 91.2-113.2% (with LLOQ <119%), and the imprecision was below 8.0% for all analytes. A stability study showed that the analytes in DBSs were stable at all evaluated temperatures for at least 30 days. The validated method was applied to quantify DBS samples (n = 56). Successful application of the new method demonstrated the potential of this method for real-world DBS samples and to facilitate our understanding of the gut microbiota in human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2021.338214 | DOI Listing |
Natl Sci Rev
September 2025
College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
The stress distribution in Li metal strongly affects the interfacial Li-ion diffusion, thereby influencing the morphology of plated Li and the performance of the battery. Here, we report a mechano-electrochemical coupling strategy that utilizes an arched structured carbon aerogel to achieve stable Li-plating/stripping electrochemistry. The arch-structured carbon aerogel can actively regulate stress distributions in response to the compressive stresses induced by Li deposition, generating the transition of stress from compressive on the convex surface to tensile on the concave surface, which can effectively promote the Li-migration kinetics and thus suppress the non-uniform deposition of Li.
View Article and Find Full Text PDFChem Sci
September 2025
College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 P. R. China
Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) owing to abundant resources and cost-effectiveness. However, cathode materials face persistent challenges in structural stability, ion kinetics, and cycle life. This review highlights the transformative potential of high-entropy (HE) strategies that leveraging multi-principal element synergies to address these limitations entropy-driven mechanisms.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
To analyse the issues of high muzzle flame intensity and the easy migration of insensitive agents in conventional insensitive propellants, this study synthesizes modified nitrocellulose grafted with carboxymethyl potassium groups by a two-step process, starting from the molecular structure of nitrocellulose (NC), the principal component of propellants. First, the denitration reaction was performed to reduce part of the nitrate ester groups on the surface of NC to hydroxyl groups, followed by an etherification reaction to achieve directional grafting of carboxymethyl potassium groups. Compared with conventional flame retardant/insensitive systems based on nitrogen, phosphorus, or DBP (dibutyl phthalate), potassium-based functional groups exhibit superior thermal stability and environmental friendliness.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.
Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.
View Article and Find Full Text PDFMicrob Biotechnol
September 2025
College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China.
The Brucella abortus A19 attenuated live vaccine poses potential infection risks during practical applications and interferes with serological diagnostics, thereby affecting quarantine measures and the establishment of disease-free zones. Consequently, this study aimed to reduce its potential virulence, enhance its protective efficacy and differentiate it from wild-type strains by knocking out the immunosuppressive virulence gene btpB in the A19 strain. Using homologous recombination, we successfully obtained the A19ΔBtpB deletion strain.
View Article and Find Full Text PDF