Superresolution characterization of core centriole architecture.

J Cell Biol

State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.

Published: April 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The centrosome is the main microtubule-organizing center in animal cells. It comprises of two centrioles and the surrounding pericentriolar material. Protein organization at the outer layer of the centriole and outward has been studied extensively; however, an overall picture of the protein architecture at the centriole core has been missing. Here we report a direct view of Drosophila centriolar proteins at ∼50-nm resolution. This reveals a Sas6 ring at the C-terminus, where it overlaps with the C-terminus of Cep135. The ninefold symmetrical pattern of Cep135 is further conveyed through Ana1-Asterless axes that extend past the microtubule wall from between the blades. Ana3 and Rcd4, whose termini are close to Cep135, are arranged in ninefold symmetry that does not match the above axes. During centriole biogenesis, Ana3 and Rcd4 are sequentially loaded on the newly formed centriole and are required for centriole-to-centrosome conversion through recruiting the Cep135-Ana1-Asterless complex. Together, our results provide a spatiotemporal map of the centriole core and implications of how the structure might be built.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863704PMC
http://dx.doi.org/10.1083/jcb.202005103DOI Listing

Publication Analysis

Top Keywords

centriole core
8
ana3 rcd4
8
centriole
6
superresolution characterization
4
characterization core
4
core centriole
4
centriole architecture
4
architecture centrosome
4
centrosome main
4
main microtubule-organizing
4

Similar Publications

Dynamic control of ciliary membrane protein content is crucial for the organelle's homeostasis and signaling function and involves removal of ciliary components by intraflagellar transport (IFT) and BBSome-mediated export, endocytic retrieval, and/or extracellular vesicle (EV) shedding. We report that the kinesin-3 motor KIF13B regulates ciliary protein composition and EV shedding in cultured kidney epithelial cells, with effects that vary over time. In early stages of ciliation, Kif13b cells aberrantly accumulate polycystin-2 (PC2) within cilia and release large EVs enriched with CCDC198 and the centriole distal appendage protein CCDC92, which also localizes to the ciliary tip.

View Article and Find Full Text PDF

Centrosomes play a fundamental role in nucleating and organizing microtubules in the cell and are vital for faithful chromosome segregation and maintenance of genomic stability. Loss of structural or functional integrity of centrosomes causes genomic instability and is a driver of oncogenesis. Here we identify lysine demethylase 4A (KDM4A), an epigenetic 'eraser' of chromatin methyl marks, as a centrosome-localized protein, visualized at the nanometer-scale resolution.

View Article and Find Full Text PDF

Introduction: Congenital anomalies of the kidney and urinary tract (CAKUT) are the leading cause of chronic kidney disease in children and young adults. Although over 50 monogenic causes have been identified, many remain unresolved. PRPF8 is a core spliceosome component, essential for pre-mRNA splicing, and further localizes to the distal mother centriole to promote ciliogenesis.

View Article and Find Full Text PDF

: Centriolar satellites are non-membranous cytoplasmic granules that cluster around centrosomes, with pericentriolar material 1 (PCM1) serving as the molecular marker for these structures. Although significant progress has been made in understanding their composition, cellular, and organismal functions over the past decades, the tissue-specific roles of centriolar satellite proteins in sperm flagellum biogenesis and male fertility are still not well understood. : We utilize publicly available data and conduct phylogenetic analysis to explore the tissue distribution and conservation of centriole satellite components across flagellated species.

View Article and Find Full Text PDF

Centrosomes catalyze the assembly of a microtubule-based bipolar spindle, essential for the precise chromosome segregation during cell division. At the center of this process lies Polo-Like Kinase 4 (PLK4), the master regulator that controls the duplication of the centriolar core to ensure the correct balance of two centrosomes per dividing cell. Disruptions in centrosome number or function can lead to genetic disorders such as primary microcephaly or drive tumorigenesis via centrosome amplification.

View Article and Find Full Text PDF