Cytoskeleton (Hoboken)
August 2025
The centrosome, an evolutionarily conserved organelle in most animal cells, plays a pivotal role in fundamental processes such as cell division and ciliogenesis. Recent evidence increasingly highlights active crosstalk between the centrosome and the signaling pathways, through which cells dynamically detect and respond to diverse extracellular and intracellular cues. In this review, we summarize the roles of the centrosome in multiple signaling pathways, including Hedgehog, Wnt, and Notch that govern cellular growth, division, differentiation, and tissue homeostasis.
View Article and Find Full Text PDFStudying organelles' interactome at system level requires simultaneous observation of subcellular compartments and tracking their dynamics. Conventional multicolor approaches rely on specific fluorescence labeling, where the number of resolvable colors is far less than the types of organelles. Here, we use a lipid-specific dye to stain all the membrane-associated organelles and spinning-disk microscopes with an extended resolution of ~143 nm for high spatiotemporal acquisition.
View Article and Find Full Text PDFThe conserved process of centriole duplication requires the establishment of a Sas6-centred cartwheel initiated by Plk4's phosphorylation of Ana1/STIL. Subsequently, the centriole undergoes conversion to a centrosome requiring its radial expansion and elongation, mediated by a network requiring interactions between Cep135, Ana1/Cep295 and Asterless/Cep152. Here, we show that mutant alleles encoding overlapping N- and C-terminal parts of Ana1 are capable of intragenic complementation to rescue radial expansion.
View Article and Find Full Text PDFThe conserved process of centriole duplication requires establishment of a Sas6-centred cartwheel initiated by Plk4's phosphorylation of Ana1/STIL. Subsequently the centriole undergoes conversion to a centrosome requiring its radial expansion and elongation, mediated by a network requiring interactions between Cep135, Ana1/Cep295, and Asterless/Cep152. Here we show that mutant alleles encoding overlapping N- and C-terminal parts of Ana1 are capable of intragenic complementation to rescue radial expansion.
View Article and Find Full Text PDFPlant Biotechnol J
February 2025
Background: The transposons of the hAT superfamily are the most widespread transposons ever known. SLEEPER genes encode domesticated transposases from the hAT superfamily, which may have lost their transposable functions during long-term evolution and transformed into host proteins that regulate plant growth and development.
Results: This study identified 162 members of the SLEEPER gene family from Brassica napus.
Biotechnol Biofuels Bioprod
February 2024
Background: Photosynthesis is a fundamental process that underlies the formation of crop yield, wherein light serves as the driving force and carbon dioxide (CO) as the raw material. These two factors have a direct influence on the progress and efficiency of photosynthesis in crops. Rapeseed is one of the four major oilseed crops worldwide.
View Article and Find Full Text PDFNat Commun
September 2023
Transmission of many plant viruses relies on phloem-feeding insect vectors. However, how plant viruses directly modulate insect behavior is largely unknown. Barley yellow striate mosaic virus (BYSMV) is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus).
View Article and Find Full Text PDFAnalyzing multivariate count data generated by high-throughput sequencing technology in microbiome research studies is challenging due to the high-dimensional and compositional structure of the data and overdispersion. In practice, researchers are often interested in investigating how the microbiome may mediate the relation between an assigned treatment and an observed phenotypic response. Existing approaches designed for compositional mediation analysis are unable to simultaneously determine the presence of direct effects, relative indirect effects, and overall indirect effects, while quantifying their uncertainty.
View Article and Find Full Text PDFis a Cd hyperaccumulator, which is a serious threat to food and fodder safety. However, no related studies on developing Cd-safe have been reported yet. Here, we screened out a novel Cd uptake-related gene, from the major facilitator superfamily in .
View Article and Find Full Text PDFThe centriole is a widely conserved organelle required for the assembly of centrosomes, cilia, and flagella. Its striking feature - the nine-fold symmetrical structure, was discovered over 70 years ago by transmission electron microscopy, and since elaborated mostly by cryo-electron microscopy and super-resolution microscopy. Here, we review the discoveries that led to the current understanding of how the nine-fold symmetrical structure is built.
View Article and Find Full Text PDFNPJ Microgravity
June 2021
Animals in space exploration studies serve both as a model for human physiology and as a means to understand the physiological effects of microgravity. To quantify the microgravity-induced changes to bone health in animals, we systematically searched Medline, Embase, Web of Science, BIOSIS, and NASA Technical reports. We selected 40 papers focusing on the bone health of 95 rats, 61 mice, and 9 rhesus monkeys from 22 space missions.
View Article and Find Full Text PDFThe centrosome is the main microtubule-organizing center in animal cells. It comprises of two centrioles and the surrounding pericentriolar material. Protein organization at the outer layer of the centriole and outward has been studied extensively; however, an overall picture of the protein architecture at the centriole core has been missing.
View Article and Find Full Text PDFCilia play critical roles during embryonic development and adult homeostasis. Dysfunction of cilia leads to various human genetic diseases, including many caused by defects in transition zones (TZs), the "gates" of cilia. The evolutionarily conserved TZ component centrosomal protein 290 (CEP290) is the most frequently mutated human ciliopathy gene, but its roles in ciliogenesis are not completely understood.
View Article and Find Full Text PDFJ Biol Chem
October 2020
The mitotic kinase Aurora B regulates the condensation of chromatin into chromosomes by phosphorylating chromatin proteins during early mitosis, whereas the phosphatase PP1γ performs the opposite function. The roles of Aurora B and PP1γ must be tightly coordinated to maintain chromosomes at a high phosphorylation state, but the precise mechanisms regulating their function remain largely unclear. Here, mainly through immunofluorescence microscopy and co-immunoprecipitation assays, we find that dissociation of PP1γ from chromosomes is essential for maintaining chromosome phosphorylation.
View Article and Find Full Text PDFCentrosome number is tightly controlled during the cell cycle to ensure proper spindle assembly and cell division. However, the underlying mechanism that controls centrosome number remains largely unclear. We show herein that the DNA replication licensing factor Cdc6 is recruited to the proximal side of the centrioles via cyclin A to negatively regulate centrosome duplication by binding and inhibiting the cartwheel protein Sas-6 from forming a stable complex with another centriole duplication core protein, STIL.
View Article and Find Full Text PDFCentrioles are required to assemble centrosomes for cell division and cilia for motility and signalling. New centrioles assemble perpendicularly to pre-existing ones in G1-S and elongate throughout S and G2. Fully elongated daughter centrioles are converted into centrosomes during mitosis to be able to duplicate and organize pericentriolar material in the next cell cycle.
View Article and Find Full Text PDFJ Cell Biol
August 2015
A steady-state metaphase spindle maintains constant length, although the microtubules undergo intensive dynamics. Tubulin dimers are incorporated at plus ends of spindle microtubules while they are removed from the minus ends, resulting in poleward movement. Such microtubule flux is regulated by the microtubule rescue factors CLASPs at kinetochores and depolymerizing protein Kif2a at the poles, along with other regulators of microtubule dynamics.
View Article and Find Full Text PDFJ Biol Chem
July 2015
Aurora kinase A and B share great similarity in sequences, structures, and phosphorylation motif, yet they show different localizations and play distinct crucial roles. The factors that determine such differences are largely unknown. Here we targeted Aurora A to the localization of Aurora B and found that Aurora A phosphorylates the substrate of Aurora B and substitutes its function in spindle checkpoint.
View Article and Find Full Text PDFThe centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function.
View Article and Find Full Text PDFCentrioles are 9-fold symmetrical structures at the core of centrosomes and base of cilia whose dysfunction has been linked to a wide range of inherited diseases and cancer. Their duplication is regulated by a protein kinase of conserved structure, the C. elegans ZYG-1 or its Polo-like kinase 4 (Plk4) counterpart in other organisms.
View Article and Find Full Text PDFDev Cell
December 2013
During the first five rounds of cell division in the mouse embryo, spindles assemble in the absence of centrioles. Spindle formation initiates around chromosomes, but the microtubule nucleating process remains unclear. Here we demonstrate that Plk4, a protein kinase known as a master regulator of centriole formation, is also essential for spindle assembly in the absence of centrioles.
View Article and Find Full Text PDFThe increase in centrosome size in mitosis was described over a century ago, and yet it is poorly understood how centrioles, which lie at the core of centrosomes, organize the pericentriolar material (PCM) in this process. Now, structured illumination microscopy reveals in Drosophila that, before clouds of PCM appear, its proteins are closely associated with interphase centrioles in two tube-like layers: an inner layer occupied by centriolar microtubules, Sas-4, Spd-2 and Polo kinase; and an outer layer comprising Pericentrin-like protein (Dplp), Asterless (Asl) and Plk4 kinase. Centrosomin (Cnn) and γ-tubulin associate with this outer tube in G2 cells and, upon mitotic entry, Polo activity is required to recruit them together with Spd-2 into PCM clouds.
View Article and Find Full Text PDFThe mechanism for nuclear envelope (NE) assembly is not fully understood. Importin-β and the small GTPase Ran have been implicated in the spatial regulation of NE assembly process. Here we report that chromatin-bound NLS (nuclear localization sequence) proteins provide docking sites for the NE precursor membrane vesicles and nucleoporins via importin-α and -β during NE assembly in Xenopus egg extracts.
View Article and Find Full Text PDF