98%
921
2 minutes
20
A steady-state metaphase spindle maintains constant length, although the microtubules undergo intensive dynamics. Tubulin dimers are incorporated at plus ends of spindle microtubules while they are removed from the minus ends, resulting in poleward movement. Such microtubule flux is regulated by the microtubule rescue factors CLASPs at kinetochores and depolymerizing protein Kif2a at the poles, along with other regulators of microtubule dynamics. How microtubule polymerization and depolymerization are coordinated remains unclear. Here we show that TPX2, a microtubule-bundling protein and activator of Aurora A, plays an important role. TPX2 was phosphorylated by Aurora A during mitosis. Its phospho-null mutant caused short metaphase spindles coupled with low microtubule flux rate. Interestingly, phosphorylation of TPX2 regulated its interaction with CLASP1 but not Kif2a. The effect of its mutant in shortening the spindle could be rescued by codepletion of CLASP1 and Kif2a that abolished microtubule flux. Together we propose that Aurora A-dependent TPX2 phosphorylation controls mitotic spindle length through regulating microtubule flux.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523612 | PMC |
http://dx.doi.org/10.1083/jcb.201412109 | DOI Listing |
J Cell Biol
October 2025
Cell and Systems Biology Program, Hospital for Sick Children, Toronto, Canada.
Mitochondria continually undergo fission to maintain their network and health. Nascent fission sites are marked by the ER, which facilitates actin polymerization to drive calcium flux into the mitochondrion and constrict the inner mitochondrial membrane. Septins are a major eukaryotic cytoskeleton component that forms filaments that can both directly and indirectly modulate other cytoskeleton components, including actin.
View Article and Find Full Text PDFPLoS Biol
September 2025
Centre for Organismal Studies (COS), Cytoskeleton, Cell Division and Signal transduction Unit, University of Heidelberg, Heidelberg, Germany.
The primary cilium is a microtubule-based organelle essential for various cellular functions, particularly signal transduction. While the role of cilia in regulating signaling pathways has been extensively studied, the impact of signaling pathways on cilia formation remains less well understood. Wnt signals are critical modulators of cell fate.
View Article and Find Full Text PDFGeroscience
September 2025
Laboratory of Cardiovascular Science, Intramural Research Program, National Institute On Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
Dysregulated proteostasis is a hallmark of aging. We investigated how efficiently proteostatic adaptations to chronic cardiac cyclic-adenosine-monophosphate (cAMP)-dependent stress change with aging in mice harboring marked cardiac-specific over-expression of adenylyl cyclase VIII (TG). We assessed protein quality control mechanisms (PQC) (ubiquitin proteasome system, autophagic flux via macroautophagy, and mitophagy) in left ventricles of TG and wild-type littermates (WT) at 3-4 and 17-21 months of age.
View Article and Find Full Text PDFFront Cell Infect Microbiol
August 2025
Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
Introduction: The direct infection of endothelial cells by (), a keystone periodontal pathogen, has been implicated in the development of atherosclerosis. While non-selective autophagy facilitates its intracellular persistence in endothelial cells, the role of selective autophagy in this process remains unclear. This study investigated whether hijacks mitophagy and lysosomes to persist in endothelial cells.
View Article and Find Full Text PDFAutophagy
September 2025
Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA.
Bone synthesis should depend on autophagy because over 10% of type I procollagen (PC1) - a heterotrimer of COL1A1 and COL1A2 chains and the precursor of the main bone matrix molecule - is misfolded and rerouted from osteoblast endoplasmic reticulum (ER) to lysosomes. However, osteoblast-specific macroautophagy knockouts in mice have produced only mild bone effects. To reconcile these observations, we compared how hypomorphic expression and a conditional knockout (cKO) of - encoding a protein required for autophagosome formation - affected versus wild-type osteoblasts and .
View Article and Find Full Text PDF