Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Poly(methyl methacrylate) resins containing chlorhexidine diacetate (CHX)-loaded mesoporous silicate MCM-41 have the ability to prevent biofilm adhesion and growth over time. With the aim of increasing knowledge of the drug release and surface properties of these materials and their relationship with antibiofilm activity, in this paper an acrylic-based resin containing CHX-loaded spherical and narrow size silanized MCM-41 was prepared. Resins containing CHX but no filler were prepared as well and compared. Samples were characterized for polymerization degree, water sorption, and drug release. The sample capacity of inhibiting biofilm adhesion and formation over time was evaluated. All samples were able to reduce the biofilm mass over time. The resin containing CHX loaded into silanized MCM-41 mesopores resulted in less activity during the first 4 h but was able to maintain antibiofilm activity for a longer time. This effect was correlated to the prolonged CHX release and to the sample surface modifications observed after treatment with water and artificial saliva, evaluated by X-ray photoemission spectroscopy, scanning electron, and atomic force microscopies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.8b00612DOI Listing

Publication Analysis

Top Keywords

drug release
12
antibiofilm activity
12
biofilm adhesion
8
silanized mcm-41
8
release sample
8
resin-based materials
4
materials chlorhexidine-loaded
4
mcm-41
4
chlorhexidine-loaded mcm-41
4
mcm-41 surface
4

Similar Publications

This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.

View Article and Find Full Text PDF

Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).

View Article and Find Full Text PDF

Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.

Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.

View Article and Find Full Text PDF

Diabetic wounds present persistent challenges due to impaired healing, recurrent infection, oxidative stress, and dysregulated glucose metabolism. Bioinspired polymeric microneedle (MN) patches have emerged as multifunctional platforms capable of penetrating the stratum corneum to deliver therapeutics directly into the dermis, enabling glucose regulation, antimicrobial action, reactive oxygen species (ROS) modulation, and proangiogenic stimulation. Recent experimental evidence has demonstrated that the integration of glucose oxidase-loaded porous metal-organic frameworks, photothermal nanomaterials, and antioxidant hydrogels within dissolvable MNs achieves synergistic bactericidal effects, accelerates collagen deposition, and enhances neovascularization in diabetic wound models.

View Article and Find Full Text PDF

Research progress on calixarene/pillararene-based controlled drug release systems.

Beilstein J Org Chem

September 2025

School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.

Intelligent controlled-release drug delivery systems that are responsive to various external stimuli have garnered significant interest from researchers and have broad applications in the biomedical field. Aromatic macrocycles, including calixarenes and pillararenes, are considered ideal candidates for the construction of supramolecular drug delivery systems because of their simple synthesis, ease of modification, electron-rich and hydrophobic cavities, and highly selective molecular recognition. In recent years, numerous supramolecular drug delivery systems utilizing aromatic macrocycles have been developed.

View Article and Find Full Text PDF