Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Here, a relative simpler and lower cost method, ion beam sputtering deposition was applied to fabricate diluted magnetic Mn Ge quantum dots (QDs). The effects of Ge-Mn co-deposition amount on the morphology and crystallization of MnGe QDs were investigated systematically by employing the atomic force microscopy and Raman spectroscopy techniques. It can be seen that the morphology, density, and crystallinity of MnGe QDs exhibit unique evolution processes with the increase of Ge-Mn co-sputtering amount. The optimal deposition amount for realizing well size-uniform, large-aspect-ratio, and high-density QDs is also determined. The unique evolution route of diluted magnetic semiconductor QDs and the amount of co-sputtering are also discussed sufficiently.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abd50bDOI Listing

Publication Analysis

Top Keywords

deposition amount
8
quantum dots
8
diluted magnetic
8
mnge qds
8
unique evolution
8
qds
5
amount effects
4
effects microstructure
4
microstructure ion-beam-sputtering
4
ion-beam-sputtering grown
4

Similar Publications

A Monte Carlo Method for Estimating Secondary Photon Yields from Beta-emitting Radionuclides Concentrated in Environmental Soil.

Health Phys

September 2025

Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.

External exposure due to secondary photons (predominantly bremsstrahlung) generated from electron source emissions in environmental soil are of concern due to their ability to deposit significant amounts of ionizing energy to organs and tissues within the body. The "condensed history method" employed in many modern Monte Carlo (MC) codes may be used to simulate secondary photon yields (given as photons per beta decay) arising from electron source emissions with relatively few assumptions regarding the secondary photon spatial, energy, and angular dependencies. These yields may in turn be used to derive protection quantities such as secondary photon effective dose rate (DR) and risk coefficients for a variety of idealized external exposure scenarios.

View Article and Find Full Text PDF

Although platelet-rich plasma (PRP) has demonstrated considerable regenerative potential in regenerative endodontic treatment, its clinical efficacy may be limited by the rapid degradation of its bioactive components, leading to inconsistent outcomes. To overcome this challenge, the present study explores the use of nano-sized exosomes derived from PRP-a novel designated as PRP exosomes (PRP-Exo)-as a more stable and targeted biomolecular delivery system to promote odontogenic differentiation within the dentin-pulp complex. The primary objective is to investigate the expression of key odontogenic markers, transforming growth factor-β1 (TGF-β1) and Dentin Sialophosphoprotein (DSPP), in human dental pulp stem cells (hDPSCs) following PRP-Exo treatment.

View Article and Find Full Text PDF

Purpose: The number of oxygen vacancies in quartz measured by electron spin resonance (ESR) as the intensity of the E' center has been used to investigate the provenance of the sediments and has been found to be a good proxy in discussing the direction and intensity of the wind system in the past. While its temporal variations have been examined using marine sediments. The present study aimed to show that terrestrial sediments are also useful for such studies on climate change when it is continuous.

View Article and Find Full Text PDF

Cardiac adipose tissue is normally present in the epicardium, but a variable amount can also be present in the myocardium, particularly in the subepicardial regions of the right ventricular anterolateral and apical regions. Pathological adipose tissue changes may occur in both ischemic (previous myocardial infarction) and nonischemic (previous myocarditis, arrhythmogenic cardiomyopathy, lipomatous hypertrophy of the interatrial septum, cardiac lipomas and liposarcomas) conditions, with or without extensive replacement-type myocardial fibrosis. Cardiac magnetic resonance is the gold standard imaging technique to characterize myocardial tissue changes and to distinguish between physiological and pathological cardiac fat deposits.

View Article and Find Full Text PDF

Measuring the stress tensor in nitrogen-doped CVD diamond using solid-state quantum sensor.

Sci Technol Adv Mater

August 2025

Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.

We measured the residual stress tensor in a nitrogen-doped chemical vapor deposition (001) diamond film. The stress tensor was evaluated from the amount of the shift in optically detected magnetic resonance (ODMR) spectra of NV center in the diamond. A confocal microscopy setup was used to observe the spatial variation of the stress tensor in the diamond film.

View Article and Find Full Text PDF