98%
921
2 minutes
20
Soils play important roles in biological productivity. While past work suggests that microbes affect soil health and respond to agricultural practices, it is not well known how soil management shapes crop host microbiomes. To elucidate the impact of management on microbial composition and function in the sorghum microbiome, we performed 16S rRNA gene and ITS2 amplicon sequencing and metatranscriptomics on soil and root samples collected from a site in California's San Joaquin Valley that is under long-term cultivation with 1) standard (ST) or no tilling (NT) and 2) cover-cropping (CC) or leaving the field fallow (NO). Our results revealed that microbial diversity, composition, and function change across tillage and cover type, with a heightened response in fungal communities, versus bacterial. Surprisingly, ST harbored greater microbial alpha diversity than NT, indicating that tillage may open niche spaces for broad colonization. Across management regimes, we observed class-level taxonomic level shifts. Additionally, we found significant functional restructuring across treatments, including enrichment for microbial lipid and carbohydrate transport and metabolism and cell motility with NT. Differences in carbon cycling were also observed, with increased prevalence of glycosyltransferase and glycoside hydrolase carbohydrate active enzyme families with CC. Lastly, treatment significantly influenced arbuscular mycorrhizal fungi, which had the greatest prevalence and activity under ST, suggesting that soil practices mediate known beneficial plant-microbe relationships. Collectively, our results demonstrate how agronomic practices impact critical interactions within the plant microbiome and inform future efforts to configure trait-associated microbiomes in crops. While numerous studies show that farming practices can influence the soil microbiome, there are often conflicting results on how microbial diversity and activity respond to treatment. In addition, there is very little work published on how the corresponding crop plant microbiome is impacted. With bacteria and fungi known to critically affect soil health and plant growth, we concurrently compared how the practices of no and standard tillage, in combination with either cover-cropping or fallow fields, shape soil and plant-associated microbiomes between the two classifications. In determining not only the response to treatment in microbial diversity and composition, but for activity as well, this work demonstrates the significance of agronomic practice in modulating plant-microbe interactions, as well as encourages future work on the mechanisms involved in community assemblages supporting similar crop outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8090879 | PMC |
http://dx.doi.org/10.1128/AEM.02345-20 | DOI Listing |
BMC Microbiol
September 2025
Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.
View Article and Find Full Text PDFBioresour Technol
September 2025
Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China. Electronic address:
This study investigated the effects of five representative biocarriers-biochar (BC), activated carbon (AC), nano-magnetite (NM), zero-valent iron (ZVI), and polyurethane sponge (PUS)-on chain elongation (CE) from ethanol/acetate in anaerobic systems. All carriers enhanced CE to varying extents. BC and NM significantly increased caproate yields (6032.
View Article and Find Full Text PDFSci Total Environ
September 2025
Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano 39100, Italy. Electronic address:
Nanoparticles (NPs) have emerged as transformative agents in agriculture, offering promising applications in nanofertilizers, nanopesticides, and soil amendments. However, significant knowledge gaps persist regarding the long-term impact of engineered NPs on soil health, including microbial networks and biogeochemical fluxes. Despite their potential to enhance nutrient use efficiency, promote crop resilience, and support sustainable farming, the interactions of NPs with soil matrices, especially their transformations, persistence, and ecological implications, are not fully explored.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China. Electronic address:
Residues of veterinary antibiotics such as tylosin in soils can induce selective pressure on indigenous soil microbes and increase the dissemination risk of antibiotic resistance genes (ARGs) by horizontal gene transfer (HGT), which poses a serious threat to both soil and public health. While conventional bioremediation methods face challenges in efficiency and stability, enzyme-based approaches offer promising alternatives. This study developed a novel biochar-immobilized tylosin-degrading enzyme (BIE) system to simultaneously address tylosin contamination and antibiotic resistance gene (ARG) proliferation in agricultural soils.
View Article and Find Full Text PDFFood Chem
September 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu 214122, China. Ele
Volvaria volvacea polysaccharides (VVP) possess diverse bioactivities with promising applications in biomedicine and functional foods. This study investigated the metabolic fate of VVP in human gut microbiota and uncovered the pivotal role of Bacteroides thetaiotaomicron using in vitro fecal fermentation models. VVP selectively promoted B.
View Article and Find Full Text PDF