98%
921
2 minutes
20
For future sustainable seawater desalination, the importance of achieving better energy efficiency of the existing 19,500 commercial-scale desalination plants cannot be over emphasized. The major concern of the desalination industry is the inadequate approach to energy efficiency evaluation of diverse seawater desalination processes by omitting the grade of energy supplied. These conventional approaches would suffice if the efficacy comparison were to be conducted for the same energy input processes. The misconception of considering all derived energies as equivalent in the desalination industry has severe economic and environmental consequences. In the realms of the energy and desalination system planners, serious judgmental errors in the process selection of green installations are made unconsciously as the efficacy data are either flawed or inaccurate. Inferior efficacy technologies' implementation decisions were observed in many water-stressed countries that can burden a country's economy immediately with higher unit energy cost as well as cause more undesirable environmental effects on the surroundings. In this article, a standard primary energy-based thermodynamic framework is presented that addresses energy efficacy fairly and accurately. It shows clearly that a thermally driven process consumes 2.5-3% of standard primary energy (SPE) when combined with power plants. A standard universal performance ratio-based evaluation method has been proposed that showed all desalination processes performance varies from 10-14% of the thermodynamic limit. To achieve 2030 sustainability goals, innovative processes are required to meet 25-30% of the thermodynamic limit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514194 | PMC |
http://dx.doi.org/10.3390/e21010084 | DOI Listing |
Beilstein J Nanotechnol
August 2025
Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, Jilin, People's Republic of China.
To address the issue of biological pollution in cellulose triacetate (CTA) membranes during seawater desalination, silver (Ag) nanoparticles were incorporated onto the CTA surface using polydopamine (PDA). PDA, which contains phenolic and amino groups, exhibits excellent adhesiveness and provides active sites for the attachment and reduction for Ag nanoparticles. Various characterizations confirm the successful introduction of Ag nanoparticles onto the surface of the PDA-modified CTA (PCTA) membrane and the preservation of CTA microstructures.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
The Institute of Technological Sciences, MOE Key Laboratory of Hydraulic Machinery Transients, Wuhan University, Wuhan 430072, China.
Flow electrode capacitive deionization is governed by particle dynamics, which are strongly influenced by surface properties and flow conditions. This study shows that carbon particles with lower surface charge aggregate more rapidly into larger clusters, significantly enhancing desalination rates and achieving current efficiencies above 90%, offering guidance for advancing capacitive deionization systems.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
Solar-driven interfacial evaporation technology represents an innovative and high-efficiency desalination approach. This technology plays a crucial role in relieving the shortage of worldwide freshwater resources. However, the interfacial evaporator still faces great challenges in terms of high efficiency and ensuring long-term evaporation stability, among other aspects.
View Article and Find Full Text PDFAdv Mater
September 2025
Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
Global water scarcity demands next-generation desalination technologies that transcend the limitations of energy-intensive processes and salt accumulation. Herein, a groundbreaking interfacial solar steam generation system capable of simultaneous hypersaline desalination and ambient energy harvesting is introduced. Through hierarchical hydrogel architecture incorporating a central vertical channel and radial channels with gradient apertures, the design effectively decouples salt transport and water evaporation: solar-driven fluid convection directs water outward for evaporation, while inward salt migration prevents surface crystallization and redistributes excess heat.
View Article and Find Full Text PDFBioresour Technol
September 2025
Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China. Electronic address:
Microbial desalination cells (MDCs) have traditionally employed simplified NaCl solutions as feedwater for synchronous desalination and bioenergy recovery. Nevertheless, the specific mechanisms by which MDCs remove complex multi-ions from saline wastewater remain obscure. This study thoroughly investigated ion migration, bioelectrochemical dynamics, and microbial ecological responses across three distinct configurations: monovalent ions - PMDC, divalent cations - CMDC and anions - AMDC.
View Article and Find Full Text PDF