Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A novel structure aluminosilicate molecular sieve, named BUCT-3, was prepared by dynamic hydrothermal synthesis, and the critical factor to obtain the new structure is using an active silicon and aluminum source, aluminosilica perhydrate hydrogel. Meanwhile, only high content of O-O bonds can ensure the pure phase of BUCT-3. Through the characterization of x-ray powder diffraction (XRD), Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), and so on, some structure and morphology information of BUCT-3 molecular sieves as well as the special silicon and aluminum source was obtained. It's worth noticing that the O-O bonds of reactants can be reserved in the products, and thus, help us to get a new structure with cell parameters a = 8.9645 Å, b = 15.2727 Å, c = 11.3907 Å, α = 90°, β = 93.858°, γ = 90°. The crystal system is monoclinic. Though the thermostability of BUCT-3 is not satisfactory, its potential application derived from O-O bonds cannot be neglected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731451PMC
http://dx.doi.org/10.3390/ma13235469DOI Listing

Publication Analysis

Top Keywords

o-o bonds
12
aluminosilicate molecular
8
molecular sieve
8
aluminosilica perhydrate
8
perhydrate hydrogel
8
silicon aluminum
8
aluminum source
8
synthesis characterization
4
characterization aluminosilicate
4
sieve aluminosilica
4

Similar Publications

The title complex, [Ca(NO)(CHNO)(HO)], crystallizes with an eight-coordinate Ca ion in a distorted trigonal-dodeca-hedral coordination environment. The metal ion is coordinated to two nicotinamide ligands their carbonyl O atoms, two bidentate nitrate anions and two water mol-ecules. The nicotinamide ligands adopt a nearly geometry, while the nitrate anions and aqua ligands are arranged in a pseudo- fashion.

View Article and Find Full Text PDF

Polytantalotungstates Stabilized Iron Catalysts for Carbonylation of Benzylic C-H Bonds.

Inorg Chem

September 2025

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.

Selective oxidation of benzylic C(sp)-H bonds to ketones is critical to the production of fine chemicals but typically requires toxic/precious metal catalysts under harsh conditions. While iron-based complexes have recently served as catalysts for photocatalytic C-H bond activation, most systems operate via homogeneous catalysis. Developing a light-driven strategy under visible light with O as an oxidant is of major importance.

View Article and Find Full Text PDF

Hydroxymethyl-methyl-α-lactone (HMML) is a key epoxide precursor in forming tracer compounds 2-methylglyceric acid (2-MG) or 2-methylglyceric acid sulfate (2-MGOS) from isoprene under high-NOx conditions. Despite its importance, the formation and transformation of HMML─particularly under acidic aerosol conditions─are still poorly understood, limiting comprehensive knowledge of secondary organic aerosol (SOA) formation. In this study, quantum chemical calculations, Born-Oppenheimer molecular dynamics (BOMD), and metadynamics (MTD) simulations are employed to investigate both the formation of HMML from methacryloyl peroxynitrate (MPAN) and its interfacial transformation mechanisms on sulfuric acid aerosols.

View Article and Find Full Text PDF

Aims: The aim of this study was to identify a minimum set of family-centred outcomes that should be collected in research involving infants with developmental dysplasia of the hip (DDH) undergoing brace treatment.

Methods: A comprehensive list of potential outcomes was developed through a literature review and survey of key stakeholders including caregivers, clinicians, and researchers. Potential outcomes were evaluated in a two-round Delphi consensus process, which included a UK-led group with international involvement comprising orthopaedic surgeons, physiotherapists, nurse practitioners, researchers, parents, and charity representatives.

View Article and Find Full Text PDF

MOF-derived Fe-Cu doped biochar composites for synchronous adsorption, electro-Fenton oxidation and in-situ regeneration for efficient antibiotic removal.

Water Res

August 2025

Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science an

Adsorption as an uncomplicated and effective water purification strategy, faced inherent limitations in pollutant mineralization and adsorbent regeneration, while conventional electro-Fenton (EF) struggles with inefficient removal of low-concentration contaminants and narrow pH applicability. To address these challenges, we developed a bifunctional MOF-derived Fe-Cu@biochar composite, which synergistically coupled adsorption with heterogeneous EF (hetero-EF) oxidation for enhanced antibiotics removal and green adsorbent regeneration. The biochar substrate engineered with mesoporous structure and large specific surface area, stabilized Fe-Cu dual sites through coordination bonds while providing abundant oxygen functional groups for rapid tetracycline (TC) adsorption (192.

View Article and Find Full Text PDF