98%
921
2 minutes
20
Ultraviolet (UV) radiation is responsible for various damages to the skin, collectively referred to as photoaging. A key UV-induced effect on the skin is excessive degradation of collagen and related structural abnormalities. is a flowering plant with cosmeceutical properties. In the present study, Camellioside A (CMDA), a triterpene saponin, was investigated for its effects against UVA-induced photoaging in HaCaT keratinocytes. CMDA was analyzed to determine its attenuating effects against UVA-induced overproduction of the collagen degradation enzyme, matrix metalloproteinase-1 (MMP-1), in UVA-irradiated immortalized human HaCaT keratinocytes. UVA irradiation significantly increased MMP-1 release from keratinocytes in addition to suppressing type Iα1 pro-collagen production. Treatment with CMDA reversed the effects of UVA irradiation on the production of MMP-1 and type Iα1 pro-collagen. UVA irradiation also stimulated the activation of p38, ERK and JNK mitogen-activated protein kinases (MAPKs) and their downstream transcription factor activator protein 1 (a heterodimer of c-Fos and c-Jun). MAPK activation and consequent phosphorylation of c-Fos and c-Jun were also inhibited by CMDA treatment. In conclusion, the present study indicated that CMDA may have potential antiphotoaging properties due to suppression of UVA-mediated MMP-1 production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7678597 | PMC |
http://dx.doi.org/10.3892/etm.2020.9448 | DOI Listing |
Int J Pharm
September 2025
Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China; Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, People's Republic of China. Electronic address:
Background: Ultrasound-assisted transdermal drug delivery, or sonophoresis, enhances skin permeability, offering a non-invasive alternative for drug administration. However, its clinical application remains limited because of an insufficient understanding of its underlying mechanisms and optimal parameters. This study investigates the factors influencing ultrasound-enhanced drug absorption and examines its biological effects on skin structures and HaCaT cells, providing a comprehensive analysis of its mechanisms.
View Article and Find Full Text PDFToxicol In Vitro
September 2025
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia.
Curcumin is a natural bioactive substance with promising biomedical applications. However, the low solubility and stability of curcumin significantly limit its potential use. The development of nanoformulations of curcumin makes it possible to circumvent the above limitations.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea.
Background: Bacterial pathogen-associated molecular patterns (PAMPs), specifically lipopolysaccharide (LPS) from Gram-negative bacteria (E. coli, P. aeruginosa) and lipoteichoic acid (LTA) from Gram-positive bacteria (S.
View Article and Find Full Text PDFChem Res Toxicol
September 2025
Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece.
Graphene-based nanomaterials have transformed biomedical applications due to their exceptional physicochemical properties, and nitrogen (N)-doping further enhances the electrocatalytic activity of graphene. Driven by the demand for safer and more sustainable nanomaterials, in this work, we compared eco-friendly produced - doped graphene (bD) with conventionally synthesized - doped graphene (cD) in three different cell lines. Across all cell types and assays, cD was more toxic than bD.
View Article and Find Full Text PDFToxicol Appl Pharmacol
September 2025
The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China. Electronic address:
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe hypersensitivity reactions characterized by extensive epidermal necrosis, often induced by medications. This research aims to investigate the involvement of all-trans retinoic acid (ATRA), a derivative of vitamin A known to induce dermatological toxicity resembling SJS/TEN, in the development of these conditions. Utilizing network toxicology methodologies, molecular docking technology, and experimental validation, we identified 159 common targets between ATRA and SJS, 38 with TEN, and 27 shared among all three conditions through databases such as SwissTargetPrediction and GeneCards.
View Article and Find Full Text PDF