67 results match your criteria: "Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences[Affiliation]"

Curcumin is a natural bioactive substance with promising biomedical applications. However, the low solubility and stability of curcumin significantly limit its potential use. The development of nanoformulations of curcumin makes it possible to circumvent the above limitations.

View Article and Find Full Text PDF

Aim     To study the activation sequence of compensatory mechanisms during the development of diastolic dysfunction.Material and methods            The study was performed on rats with stress cardiomyopathy induced by high doses of isoproterenol (120 mg/kg twice a day). Heart function was studied 3-5 and 8-10 days after the injection by echocardiography and left ventricular (LV) catheterization.

View Article and Find Full Text PDF

The use of nanoradiosensitizers is a promising strategy for the precision enhancement of tumor tissue damage during radiotherapy. Here, we propose a novel biocompatible theranostic agent based on gadolinium fluoride doped with cerium and terbium (GdCeTbF NPs), which showed pronounced radiocatalytic activity when exposed to photon or proton beam irradiation, as well as remarkable MRI contrast ability. A scheme for the production of biocompatible colloidally stable GdCeTbF NPs was developed.

View Article and Find Full Text PDF

Novel three-dimensional porous composites of alginate-pectin (A/P) with zinc- or manganese-substituted hydroxyapatites (A/P-ZnHA and A/P-MnHA) were synthesized via lyophilization and calcium cross-linking. Powder X-ray diffraction and infrared spectroscopy analyses confirmed single-phase apatite formation (crystallite sizes < 1 µm), with ZnHA exhibiting lattice contraction (*c*-axis: 6.881 Å vs.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by the formation of neurotoxic beta-amyloid (Aβ) oligomers in the central nervous system. One of the earliest pathological effects of Aβ is the induction of oxidative stress in brain tissue, mediated by NADPH oxidase 2 (NOX2). This study aimed to determine whether short-term inhibition of NOX2 could disrupt the pathological cascade and prevent the development of Aβ-induced pathology.

View Article and Find Full Text PDF

Retraction of 'Biocompatible dextran-coated gadolinium-doped cerium oxide nanoparticles as MRI contrast agents with high relaxivity and selective cytotoxicity to cancer cells' by A. L. Popov , , 2021, , 6586-6599, https://doi.

View Article and Find Full Text PDF

The performance of heterophase immunoassays is often limited by the kinetics of analyte binding. This problem is partially solved by bead-based assays, which are characterized by rapid diffusion in the particle suspension. However, at low analyte concentrations, the binding rate is still low.

View Article and Find Full Text PDF

Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) is a therapeutically relevant protein belonging to the TNF superfamily. Both membrane-bound and soluble (sTRAIL) forms of TRAIL affect innate and adaptive immune responses. We recently showed that soluble TNF binds specific members of the S100 family of multifunctional calcium-binding proteins, leading to suppression of its cytotoxic activity (Int.

View Article and Find Full Text PDF

The Impact of Silicon Nanoparticle Porosity on Their Ability to Sensitize Low-Intensity Medical Ultrasound.

Sovrem Tekhnologii Med

May 2025

PhD, Leading Researcher; Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino, 142290, Russia; Senior Researcher; Institute for Biological Instrumentation of the Russian Academy of Sciences, 7 Institutskaya St., Pushchino, 142290, Ru

This study investigates the role of porosity in silicon nanoparticles' ability to act as sonosensitizers for sonodynamic therapy of malignant tumors. Structural analysis showed that porous nanoparticles are composed of nanocrystals approximately 4 nm in size and contain 15 nm pores, whereas non-porous nanoparticles have a dense structure with nanocrystals ranging from 10 to 50 nm. Porous nanoparticles exhibit pronounced photoluminescent properties, associated with quantum confinement effects in their small nanocrystals.

View Article and Find Full Text PDF

Ionizing radiation leads to the development of oxidative stress and damage to biologically important macromolecules (DNA, mitochondria, etc.), which in turn lead to cell death. In the case of radiotherapy, both cancer cells and normal cells are damaged.

View Article and Find Full Text PDF

Precise control of cellular temperature at the microscale is crucial for developing novel neurostimulation techniques. Here, the effect of local heat on the electrophysiological properties of primary neuronal cultures and HEK293 cells at the subcellular level using a cutting-edge micrometer-scale thermal probe, the diamond heater-thermometer (DHT), is studied. A new mode of local heat action on a living cell, thermal-capture mode (TCM), is discovered using the DHT probe.

View Article and Find Full Text PDF

The process of laser-induced breakdown of amorphous and crystalline selenium nanoparticles (Se NPs) of various shapes during nanosecond laser fragmentation of aqueous colloidal solutions of nanoparticles with different concentrations has been studied. The methods of studying the characteristics of plasma and acoustic oscillations induced by optical breakdown are applied. The methods of assessing the concentration of hydrogen peroxide and hydroxyl radicals, the amount of long-lived reactive species of protein and 8-oxoguanine are applied.

View Article and Find Full Text PDF

In the past, polyacrylamide hydrogel was a popular choice for breast augmentation filler, and many women underwent mammoplasty with this gel. However, due to frequent complications, the use of polyacrylamide hydrogel in mammoplasty has been banned. Despite this ban, patients experiencing complications still seek medical treatment.

View Article and Find Full Text PDF

Crystalline cerium(III) phosphate (CePO), cerium(IV) phosphates, and nanocrystalline ceria are considered to be promising components of sunscreen cosmetics. This paper reports on a study in which, for the first time, a quantitative comparative analysis was performed of the UV-shielding properties of CePO, Ce(PO)(HPO)(HO), and CePO/CeO composites. Both the sun protection factor and protection factor against UV-A radiation of the materials were determined.

View Article and Find Full Text PDF

Their unique physicochemical properties and multi-enzymatic activity make CeO nanoparticles (CeO NPs) the most promising active component of the next generation of theranostic drugs. When doped with gadolinium ions, CeO NPs constitute a new type of contrast agent for magnetic resonance imaging, possessing improved biocatalytic properties and a high level of biocompatibility. The present study is focused on an in-depth analysis of the enzyme-like properties of gadolinium-doped CeO NPs (CeO:Gd NPs) and their antioxidant activity against superoxide anion radicals, hydrogen peroxide, and alkylperoxyl radicals.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a malignant neoplasm characterized by extremely low curability and survival. The inflammatory microenvironment and maturation (differentiation) of AML cells induced by it contribute to the evasion of these cells from effectors of antitumor immunity. One of the key molecular effectors of immune surveillance, the cytokine TRAIL, is considered a promising platform for developing selective anticancer drugs.

View Article and Find Full Text PDF

Polysaccharide Composite Alginate-Pectin Hydrogels as a Basis for Developing Wound Healing Materials.

Polymers (Basel)

January 2024

Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy.

This article presents materials that highlight the bioengineering potential of polymeric systems of natural origin based on biodegradable polysaccharides, with applications in creating modern products for localized wound healing. Exploring the unique biological and physicochemical properties of polysaccharides offers a promising avenue for the atraumatic, controlled restoration of damaged tissues in extensive wounds. The study focused on alginate, pectin, and a hydrogel composed of their mixture in a 1:1 ratio.

View Article and Find Full Text PDF

Temperature is a crucial regulator of the rate and direction of biochemical reactions and cell processes. The recent data indicating the presence of local thermal gradients associated with the sites of high-rate thermogenesis, on the one hand, demonstrate the possibility for the existence of "thermal signaling" in a cell and, on the other, are criticized on the basis of thermodynamic calculations and models. Here, we review the main thermometric techniques and sensors developed for the determination of temperature inside living cells and diverse intracellular compartments.

View Article and Find Full Text PDF

Radiation dermatitis (RD) is one of the most common side effects of radiation therapy. However, to date, there is a lack of both specific treatments for RD and validated experimental animal models with the use of various sources of ionizing radiation (IR) applied in clinical practice. The aim of this study was to develop and validate a model of acute RD induced using proton radiation in mice.

View Article and Find Full Text PDF

The review provides information on proteins with structural repeats, including their classification, characteristics, functions, and relevance in disease development. It explores methods for identifying structural repeats and specialized databases. The review also highlights the potential use of repeat proteins as drug design scaffolds and discusses their evolutionary mechanisms.

View Article and Find Full Text PDF

Cold argon plasma (CAP) and metal oxide nanoparticles are well known antimicrobial agents. In the current study, on an example of , a series of analyses was performed to assess the antibacterial action of the combination of these agents and to evaluate the possibility of using cerium oxide and cerium fluoride nanoparticles for a combined treatment of bacterial diseases. The joint effect of the combination of cold argon plasma and several metal oxide and fluoride nanoparticles (CeO, CeF, WO) was investigated on a model of colony growth on agar plates.

View Article and Find Full Text PDF

Hepatic encephalopathy (HE), a neuropsychiatric disorder developing in patients with severe hepatic dysfunction, has been known for more than a century. However, pathogenetic mechanisms of cerebral dysfunction associated with liver disease are still poorly understood. There is a consensus that the primary cause of HE is accumulation of ammonia in the brain as a result of impaired liver detoxification capacity or the portosystemic shunt.

View Article and Find Full Text PDF

With the help of laser ablation, a technology for obtaining nanosized crystalline selenium particles (SeNPs) has been created. The SeNPs do not exhibit significant toxic properties, in contrast to molecular selenium compounds. The administration of SeNPs can significantly increase the viabilities of SH-SY5Y and PCMF cells after radiation exposure.

View Article and Find Full Text PDF

We report a new approach to controllable thermal stimulation of a single living cell and its compartments. The technique is based on the use of a single polycrystalline diamond particle containing silicon-vacancy (SiV) color centers. Due to the presence of amorphous carbon at its intercrystalline boundaries, such a particle is an efficient light absorber and becomes a local heat source when illuminated by a laser.

View Article and Find Full Text PDF

Ionizing radiation and radiation-related oxidative stress are two important factors responsible for the death of actively proliferating cells, thus drastically reducing the regeneration capacity of living organisms. Planarian flatworms are freshwater invertebrates that are rich in stem cells called neoblasts and, therefore, present a well-established model for studies on regeneration and the testing of novel antioxidant and radioprotective substances. In this work, we tested an antiviral and antioxidant drug Tameron (Monosodium α-Luminol or 5-amino-2,3-dihydro-1,4-phthalazinedione sodium salt) for its ability to reduce the harm of X-ray- and chemically induced oxidative stress on a planarian model.

View Article and Find Full Text PDF