Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MicroRNAs are non-coding RNAs that regulate gene expression post-transcriptionally. In the placenta, the master regulator of foetal growth and development, microRNAs shape the basic processes of trophoblast biology and specific microRNA have been associated with foetal growth. To comprehensively assess the role of microRNAs in placental function and foetal development, we have performed small RNA sequencing to profile placental microRNAs from two independent mother-infant cohorts: the Rhode Island Child Health Study (n = 225) and the New Hampshire Birth Cohort Study (n = 317). We modelled microRNA counts on infant birthweight percentile (BWP) in each cohort, while accounting for race, sex, parity, and technical factors, using negative binomial generalized linear models. We identified microRNAs that were differentially expressed (DEmiRs) with BWP at false discovery rate (FDR) less than 0.05 in both cohorts. hsa-miR-532-5p (miR-532) was positively associated with BWP in both cohorts. By integrating parallel whole transcriptome and small RNA sequencing in the RICHS cohort, we identified putative targets of miR-532. These targets are enriched for pathways involved in adipogenesis, adipocytokine signalling, energy metabolism, and hypoxia response, and included Leptin, which we further demonstrated to have a decreasing expression with increasing BWP, particularly in male infants. Overall, we have shown a robust and reproducible association of miR-532 with BWP, which could influence BWP through regulation of adipocytokines Leptin and Adiponectin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216179PMC
http://dx.doi.org/10.1080/15592294.2020.1827704DOI Listing

Publication Analysis

Top Keywords

foetal growth
8
small rna
8
rna sequencing
8
bwp
6
micrornas
5
placental microrna
4
microrna expression
4
expression associates
4
associates birthweight
4
birthweight control
4

Similar Publications

Modulating Placental Functionality in Preeclampsia With siRNA Nanocomplexes.

Hypertension

September 2025

Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu (Z.W.).

Background: Early-onset preeclampsia poses significant risks to maternal and fetal health, necessitating a deeper understanding of its molecular mechanisms and effective therapeutic strategies.

Methods: Utilizing data from genome-wide association study and Mendelian randomization analysis, we investigated the relationship between mitochondrial DNA copy number and preeclampsia. Transcriptome sequencing, in vitro experiments, and animal studies were conducted to explore the roles of SENP3 and SETD7 in preeclampsia pathogenesis.

View Article and Find Full Text PDF

Introduction: The SOX9 gene encodes a transcription factor that acts downstream of the Y-linked SRY gene and plays a pivotal role in fetal testis development. Duplication of SOX9 or its regulatory sequences is a known cause of testicular or ovotesticular disorder of sex development (DSD) in chromosomal females (XX DSD). Numerous reports have described canine XX DSD, characterized by virilization (e.

View Article and Find Full Text PDF

LONP1 Variants Are Associated With Clinically Diverse Phenotypes.

Clin Genet

September 2025

Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

LONP1 encodes a mitochondrial protease essential for protein quality control and metabolism. Variants in LONP1 are associated with a diverse and expanding spectrum of disorders, including Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies syndrome (CODAS), congenital diaphragmatic hernia (CDH), and neurodevelopmental disorders (NDD), with some individuals exhibiting features of mitochondrial encephalopathy. We report 16 novel LONP1 variants identified in 16 individuals (11 with NDD, 5 with CDH), further expanding the clinical spectrum.

View Article and Find Full Text PDF

Background: Prenatal alcohol exposure (PAE) causes fetal alcohol spectrum disorder (FASD) and is associated with various cognitive and sensory impairments, including olfactory dysfunction. While both genetic and environmental factors contribute to olfactory dysfunction, PAE is considered a significant factor affecting brain development, including the olfactory system. In this study, we investigated the impact of PAE on the developing olfactory bulb (OB), specifically focusing on OB RGCs-radial glial cells that give rise to OB projection neurons.

View Article and Find Full Text PDF

Purpose: Preterm premature rupture of membranes (PPROM) is a major contributor to preterm birth and is associated with increased risks of maternal and neonatal complications. The aim of this review is to summarize current antibiotic strategies and explore emerging adjunctive therapies, including probiotics, amnioinfusion, and fetal membrane repair, to improve the management of PPROM.

Methods: Relevant literature on antibiotic therapy for PPROM and emerging treatment strategies was systematically retrieved from PubMed.

View Article and Find Full Text PDF