98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367205 | PMC |
http://dx.doi.org/10.1093/nar/gkaa537 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulju-gun, UNIST-gil 50, Ulsan, 44919, Republic of Korea.
Structurally colored colloids, or photonic pigments, offer a sustainable alternative to conventional dyes, yet existing systems are constrained by limited morphologies and complex synthesis. In particular, achieving angle-independent color typically relies on disordered inverse architectures formed from synthetically demanding bottlebrush block copolymers (BCPs), hindering scalability and functional diversity. Here, we report a conceptually distinct strategy to assemble three-dimensional inverse photonic glass microparticles using amphiphilic linear BCPs (poly(styrene-block-4-vinylpyridine), PS-b-P4VP) via an emulsion-templated process.
View Article and Find Full Text PDFNanophotonics
August 2025
Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin, 300072, China.
Vortex beams, characterized by orbital angular momentum (OAM), hold significant potential in optical communications, quantum information processing, and optical manipulation. However, existing metasurface designs are largely confined to single-degree-of-freedom control, such as static OAM generation or fixed focal points, which limiting their ability to integrate polarization multiplexing with dynamic focal tuning. To address this challenge, we propose a tunable multifunctional cascaded metasurface that synergizes polarization-sensitive phase engineering with interlayer rotational coupling, overcoming conventional device limitations.
View Article and Find Full Text PDFJ Am Chem Soc
August 2025
Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
The stereodivergent synthesis of structurally complex molecules bearing multiple stereochemical elements represents a pivotal challenge in modern synthetic chemistry, particularly for bioactive compounds, where stereochemical nuances dictate pharmacological profiles. While stereodivergent dual catalysis has advanced full access to stereoisomers with stereogenic centers, the integration of stereodefined alkenes into chiral molecules with both stereochemical and skeletal diversification remains elusive. In this study, we report stereo- and skeleton-divergent access to chiral fluorinated -heterocycles with comprehensive stereocontrol of [(,), (,), (,), (,)] and [(,), (,), (,), (,)] enabled by a bimetallic Cu/Ru relay catalytic system, featuring redox-neutral efficiency and atom/step economy.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Information Communication, Army Academy of Armored Forces, Beijing 100072, P. R. China.
Achieving crosstalk-free, multimodal photopatterning within a single material element is crucial for enhancing information storage capacity and security. Herein, we report composite dye nanoparticles constructed via supramolecular encapsulation of aggregation-caused quenching (ACQ) dyes by an aggregation-induced emission (AIE) matrix. This architecture enables efficient Förster resonance energy transfer (FRET) from tetraphenylethylene (TPE) to 2,5-bis(4-(diethylamino)-benzylidene)cyclopentanone (BDEA), resulting in dual-mode optical encoding.
View Article and Find Full Text PDF