Event-related desynchronization of alpha and beta band neural oscillations predicts speech and limb motor timing deficits in normal aging.

Behav Brain Res

Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States. Electronic address:

Published: September 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Normal aging is associated with decline of motor timing mechanisms implicated in planning and execution of movement. Evidence from previous studies has highlighted the relationship between neural oscillatory activities and motor timing processing in neurotypical younger adults; however, it remains unclear how normal aging affects the underlying neural mechanisms of movement in older populations. In the present study, we recorded EEG activities in two groups of younger and older adults while they performed randomized speech and limb motor reaction time tasks cued by temporally predictable and unpredictable sensory stimuli. Our data showed that older adults were significantly slower than their younger counterparts during speech production and limb movement, especially in response to temporally unpredictable sensory stimuli. This behavioral effect was accompanied by significant desynchronization of alpha (7-12 Hz) and beta (13-25 Hz) band neural oscillatory activities in older compared with younger adults, primarily during the preparatory pre-motor phase of responses for speech production and limb movement. In addition, we found that faster motor reaction times in younger adults were significantly correlated with weaker desynchronization of pre-motor alpha and beta band neural activities irrespective of stimulus timing and response modality. However, the pre-motor components of alpha and beta activities were timing-specific in older adults and were more strongly desynchronized in response to temporally predictable sensory stimuli. These findings highlight the role of alpha and beta band neural oscillations in motor timing processing mechanisms and reflect their functional deficits during the planning phase of speech production and limb movement in normal aging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2020.112763DOI Listing

Publication Analysis

Top Keywords

alpha beta
16
band neural
16
motor timing
16
normal aging
16
beta band
12
younger adults
12
older adults
12
sensory stimuli
12
speech production
12
production limb
12

Similar Publications

Gut microbiota dysbiosis in people living with HIV who have cancer: novel insights and diagnostic potential.

Front Immunol

September 2025

Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.

Background: People living with HIV(PLWH) are a high-risk population for cancer. We conducted a pioneering study on the gut microbiota of PLWH with various types of cancer, revealing key microbiota.

Methods: We collected stool samples from 54 PLWH who have cancer (PLWH-C), including Kaposi's sarcoma (KS, n=7), lymphoma (L, n=22), lung cancer (LC, n=12), and colorectal cancer (CRC, n=13), 55 PLWH who do not have cancer (PLWH-NC), and 49 people living without HIV (Ctrl).

View Article and Find Full Text PDF

Background: The neonatal period is critical for oral microbiome establishment, but temporal patterns in preterm newborns remain unclear. This study examined longitudinal microbiome changes in full-term and preterm newborns and assessed perinatal and clinical influences.

Methods: Oral swabs were collected from 98 newborns (23 full-term, 75 preterm).

View Article and Find Full Text PDF

Mitigative effects of carboxymethyl chitosan on the deterioration of gliadin tractility in frozen rice dough during frozen storage.

Food Chem X

August 2025

School of Life Science, Anqing Normal University, Jixian North Road1318, Yixiu District, Anqing 246052, Anhui Province, China.

Frozen storage deteriorates the texture and digestibility of frozen rice dough by damaging gliadin structure and starch integrity. This study investigated carboxymethyl chitosan (CMCh) and sodium carboxymethyl cellulose (CMCNa) as cry-oprotectants to mitigate these effects. Comprehensive analysis utilizing nuclear magnetic resonance (NMR), texture profile analysis (TPA), dynamic contact angle measurement (DCAT21), reversed-phase high-performance liquid chromatography (RP-HPLC), and circular dichroism (CD) demonstrated that 1.

View Article and Find Full Text PDF

Antiviral efficacy of silicon nitride against SARS-CoV-2 and MERS-CoV: implications for PPE innovation.

Front Microbiol

August 2025

Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.

Medical interventions, such as masks, were a cornerstone in mitigating the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since 2019, the scientific community has increasingly focused on exploring avenues for pandemic prevention and preparedness to enhance responses to future viral outbreaks. One such area of interest explores the use of additives, such as silicon nitride (Si₃N₄), in masks to enhance the antiviral properties of personal protective equipment.

View Article and Find Full Text PDF

Progress of estrogen receptor and spliceosome in endometrial carcinoma.

Front Endocrinol (Lausanne)

September 2025

Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China.

Endometrial cancer (EC) is one of the most common gynecological cancers in developed countries. Like EC, most female reproductive tract malignancies are thought to be hormonally driven, with estrogen signaling acting as an oncogenic signal. The actions of estrogen are mediated through the classical nuclear estrogen receptors α (ER-α) and β (ER-β) as well as transmembrane G protein-coupled estrogen receptors (GPR30 and GPER).

View Article and Find Full Text PDF