Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Quantitative detection of exosomes in bio-fluids is a challenging task in a dynamic research field. The absence of a well-established reference material (RM) for method development and inter-comparison studies could be potentially overcome with artificial exosomes: lab-produced biomimetic particles with morphological and functional properties close to natural exosomes. This work presents the design, development and functional characteristics of fully artificial exosomes based on tetraspanin extracellular loops-coated niosomes, produced by bio-nanotechnology methods based on supra-molecular chemistry and recombinant protein technology. Mono- and double-functionalized particles with CD9/CD63 tetraspanins have been developed and characterized from a morphological and functional point of view. Produced bio-particles showed close similarities with natural entities in terms of physical properties. Their utility for bioanalysis is demonstrated by their detection and molecular-type discrimination by enzyme-linked immunosorbent assays (ELISAs), one of the most frequent bio-analytical method found in routine and research labs. The basic material based on streptavidin-coated niosomes allows the surface functionalization with any biotinylated protein or peptide, introducing versatility. Although promising results have been reported, further optimizations and deeper characterization will help this innovative biomaterial become a robust RM for validation and development of diagnostic tools for exosomes determination

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712311PMC
http://dx.doi.org/10.3390/nano10050971DOI Listing

Publication Analysis

Top Keywords

artificial exosomes
8
morphological functional
8
exosomes
5
selected tetraspanins
4
tetraspanins functionalized
4
functionalized niosomes
4
niosomes potential
4
potential standards
4
standards exosome
4
exosome immunoassays
4

Similar Publications

Harnessing biomarkers to guide immunotherapy in esophageal cancer: toward precision oncology.

Clin Transl Oncol

September 2025

Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman, University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia.

Esophageal cancer (EC) is one of the most serious health issues around the world, ranking seventh among the most lethal types of cancer and eleventh among the most common types of cancer worldwide. Traditional therapies-such as surgery, chemotherapy, and radiation therapy-often yield limited success, especially in the advanced stages of EC, prompting the pursuit of novel and more effective treatment strategies. Immunotherapy has emerged as a promising option; nonetheless, its clinical success is hindered by variable patient responses.

View Article and Find Full Text PDF

Photoactivatable Synthetic Exosomes for RNA-Based Communication Between Artificial Cells and Living Cells.

Angew Chem Int Ed Engl

September 2025

Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.

Artificial cells are self-assembled microstructures engineered to replicate the functions of natural cells, such as the capacity to interact and communicate. Until now, communication between artificial and living cells has mainly been based on the exchange of small molecules. An important communication pathway in living systems, however, involves the exchange of bioactive molecules such as neurotransmitters and nucleic acids via their protected transport with vesicles or exosomes.

View Article and Find Full Text PDF

Sepsis is a complex systemic disease in which systemic toxicity-arising from inflammation-immune dysregulation, oxidative stress, programmed cell death (apoptosis, pyroptosis, ferroptosis), and metabolic reprogramming-drives multi-organ injury. The aim of this review was to synthesize how signaling pathways evolve within and between key organs (lungs, liver, kidneys, heart) and to evaluate whether multi-omics integration and network modeling can identify critical toxic nodes and predict disease progression. We conducted a narrative review of English-language mechanistic studies published between 2015 and 2025 in PubMed, Web of Science, and Scopus, supplemented by bibliography screening, while excluding case reports, conference abstracts, and non-mechanistic work.

View Article and Find Full Text PDF

Overcoming the Blood-Brain Barrier: Advanced Strategies in Targeted Drug Delivery for Neurodegenerative Diseases.

Pharmaceutics

August 2025

Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Chongno-gu, Seoul 03080, Republic of Korea.

The increasing global health crisis of neurodegenerative diseases such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and Huntington's disease is worsening because of a rapidly increasing aging population. Disease-modifying therapies continue to face development challenges due to the blood-brain barrier (BBB), which prevents more than 98% of small molecules and all biologics from entering the central nervous system. The therapeutic landscape for neurodegenerative diseases has recently undergone transformation through advances in targeted drug delivery that include ligand-decorated nanoparticles, bispecific antibody shuttles, focused ultrasound-mediated BBB modulation, intranasal exosomes, and mRNA lipid nanoparticles.

View Article and Find Full Text PDF