Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Antimonite [Sb(III)]-oxidizing bacterium has great potential in the environmental bioremediation of Sb-polluted sites. Bacillus sp. S3 that was previously isolated from antimony-contaminated soil displayed high Sb(III) resistance and Sb(III) oxidation efficiency. However, the genomic information and evolutionary feature of Bacillus sp. S3 are very scarce.

Results: Here, we identified a 5,436,472 bp chromosome with 40.30% GC content and a 241,339 bp plasmid with 36.74% GC content in the complete genome of Bacillus sp. S3. Genomic annotation showed that Bacillus sp. S3 contained a key aioB gene potentially encoding As (III)/Sb(III) oxidase, which was not shared with other Bacillus strains. Furthermore, a wide variety of genes associated with Sb(III) and other heavy metal (loid) s were also ascertained in Bacillus sp. S3, reflecting its adaptive advantage for growth in the harsh eco-environment. Based on the analysis of phylogenetic relationship and the average nucleotide identities (ANI), Bacillus sp. S3 was proved to a novel species within the Bacillus genus. The majority of mobile genetic elements (MGEs) mainly distributed on chromosomes within the Bacillus genus. Pan-genome analysis showed that the 45 genomes contained 554 core genes and many unique genes were dissected in analyzed genomes. Whole genomic alignment showed that Bacillus genus underwent frequently large-scale evolutionary events. In addition, the origin and evolution analysis of Sb(III)-resistance genes revealed the evolutionary relationships and horizontal gene transfer (HGT) events among the Bacillus genus. The assessment of functionality of heavy metal (loid) s resistance genes emphasized its indispensable role in the harsh eco-environment of Bacillus genus. Real-time quantitative PCR (RT-qPCR) analysis indicated that Sb(III)-related genes were all induced under the Sb(III) stress, while arsC gene was down-regulated.

Conclusions: The results in this study shed light on the molecular mechanisms of Bacillus sp. S3 coping with Sb(III), extended our understanding on the evolutionary relationships between Bacillus sp. S3 and other closely related species, and further enriched the Sb(III) resistance genetic data sources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7193398PMC
http://dx.doi.org/10.1186/s12866-020-01737-3DOI Listing

Publication Analysis

Top Keywords

bacillus genus
20
bacillus
15
complete genome
8
sbiii resistance
8
heavy metal
8
metal loid
8
harsh eco-environment
8
evolutionary relationships
8
sbiii
6
genes
6

Similar Publications

Lipase production from VC-6 isolated from the volcanic region of Copahue: optimization and functional genomic insights.

Front Microbiol

August 2025

Centro de Biotecnología, Facultad de Ciencias y Tecnología, Universidad Mayor de San Simón, Cochabamba, Bolivia.

Extremophilic microorganisms produce highly stable and industrial-grade enzymes with enhanced performance. Thermostable enzymes, such as lipases that catalyze the hydrolysis and esterification of lipids, are of great industrial interest due to their stability and efficacy under harsh conditions, making them ideal for applications in biotechnology, pharmaceuticals, and cosmetics. Lipase production from various microorganisms is well-studied.

View Article and Find Full Text PDF

Isolation, culture, and in vitro functional validation of intratumor bacteria from lung cancer patients.

BMC Microbiol

August 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.

Objective: Culturomics and 16 S rDNA sequencing were applied to identify lung tumor-resident microorganisms. In vitro characterization revealed potential functions of these cancer-associated microorganisms.

Methods: Eighteen clinical lung cancer (LC) tissues samples were collected.

View Article and Find Full Text PDF

Cooperative Interactions Between Bacillus and Lysobacter Enhance Consortium Stability and Fusarium Wilt Suppression in Cucumber.

Microb Ecol

August 2025

Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, C

The rhizosphere microbiome plays a pivotal role in plant health by mediating interactions between hosts, beneficial microbes, and pathogens. However, the ecological mechanisms underlying microbial consortia that suppress soil-borne diseases remain largely unexplored. In this study, we investigated how the biocontrol bacterium Bacillus velezensis SQR9 influences the assembly of the cucumber rhizosphere bacterial community in the presence of the pathogenic fungus Fusarium oxysporum f.

View Article and Find Full Text PDF

Insecticide resistance has been a major challenge for pest management worldwide. Here, we investigated how gut symbiotic bacteria in insects might affect resistance to chemical (organophosphate) and biological (Bacillus thuringiensis) insecticides in different ways to create opportunities for strategic pesticide rotations. Using the diamondback moth (Plutella xylostella) as the target pest, we demonstrated that long-term exposure to chlorpyrifos (an organophosphate insecticide) promotes the proliferation of the gut symbiont Enterococcus mundtii in P.

View Article and Find Full Text PDF

Analysis of the Differences in Rhizosphere Microbial Communities and Pathogen Adaptability in Chili Root Rot Disease Between Continuous Cropping and Rotation Cropping Systems.

Microorganisms

August 2025

Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China.

In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. In this study, we analyzed the composition and characteristics of rhizosphere soil microbial communities under chili continuous cropping (CC) and chili-cotton crop rotation (CR) using high-throughput sequencing technology.

View Article and Find Full Text PDF