Ultrathin Hematite Photoanode with Gradient Ti Doping.

Research (Wash D C)

Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

Published: February 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The poor photoelectrochemical (PEC) performance derived from insufficient charge separation in hematite photoanode crucially limits its application. Gradient doping with band bending in a large region is then considered as a promising strategy, facilitating the charge transfer ability due to the built-in electric field. Herein, we developed a synthetic strategy to prepare gradient Ti-doped ultrathin hematite photoelectrode and systematically investigated its PEC performance. The as-synthesized electrode (1.5-6.0% doping level from the surface to the substrate) delivered a photocurrent of about 1.30 mA cm at 1.23 V versus the reversible hydrogen electrode (RHE), which is nearly 100% higher than that of homogeneously doped hematite electrode. The enhanced charge transfer property, induced by the energy band bending due to the built-in electric field, has been further confirmed by electrochemical measurements. This strategy of gradient doping should be adaptable and can be applied for other functional materials in various fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060458PMC
http://dx.doi.org/10.34133/2020/5473217DOI Listing

Publication Analysis

Top Keywords

gradient doping
12
ultrathin hematite
8
hematite photoanode
8
pec performance
8
band bending
8
charge transfer
8
built-in electric
8
electric field
8
gradient
4
photoanode gradient
4

Similar Publications

Understanding gastric physiology in rodents is critical for advancing preclinical neurogastroenterology research. However, existing techniques are often invasive, terminal, or limited in resolution. This study aims to develop a non-invasive, standardized MRI protocol capable of capturing whole-stomach dynamics in anesthetized rats with high spatiotemporal resolution.

View Article and Find Full Text PDF

Nanoimprinting Pattern on Responsive Microwrinkles for Dynamic Optical Diffraction and Reflection.

ACS Nano

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.

View Article and Find Full Text PDF

Multifunctional Photoactive Janus Nanofibrous Membranes for Unidirectional Water Transport and Remediation of Airborne Pathogens and Pollutants.

ACS Nano

September 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.

Airborne pathogens and pollution control typically necessitate multiple membranes, each specializing in efficient aerosol filtration, moisture regulation, or antimicrobial protection. Integrating all these functions into a single membrane is highly advantageous but remains inherently challenging due to material incompatibility and inevitable performance trade-offs. Here, we present a photoactive Janus nanofibrous membrane for highly efficient air purification, engineered via sequential electrospinning.

View Article and Find Full Text PDF

Enhanced rotator cuff tendon-bone interface regeneration with injectable manganese-based mesoporous silica nanoparticle-loaded dual crosslinked hydrogels.

Front Bioeng Biotechnol

August 2025

Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China.

Introduction: During the healing process, the functional gradient attachment of the rotator cuff (RC) tendon-bone interface fails to regenerate, which severely impedes load transfer and stress dissipation, thereby increasing the risk of retears. As a result, the treatment of rotator cuff tears remains a significant clinical challenge.

Methods: In this study, a dual-crosslinked hyaluronic acid/polyethylene glycol (HA/PEG) hydrogel scaffold was synthesized using hyaluronic acid and polyethylene glycol as base materials.

View Article and Find Full Text PDF

Proton Flux Engineering via Built-in Electric Fields in N-doped CuO@CoO@Ni(OH) Heterostructure for Rechargeable Zn-NO /5-Hydroxymethylfurfural Multielectron Transfer Systems.

Angew Chem Int Ed Engl

September 2025

International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P.R. China.

Electrocatalytic coupling of nitrate reduction (NORR) to ammonia with 5-hydroxymethylfurfural (HMF) oxidation to 2,5-furandicarboxylic acid (FDCA) enables simultaneous wastewater remediation and biomass valorization. However, developing efficient bifunctional electrocatalysts for these multiproton-coupled electron transfer reactions remains challenging as conventional single-active-site catalysts inherently suffer from linear scaling relationships between intermediates and adsorption energies, particularly sluggish proton transfer. To address this, we engineered a triphasic N-doped CuO@CoO@Ni(OH) heterostructure with a gradient built-in electric field (BIEF), which synergistically enhances interfacial charge polarization and accelerates proton transport through dynamic coupling effects in both reactions: sufficient *H supply for NORR and fast Ni(OH)/NiOOH redox cycling during HMF oxidation (HMFOR), thus achieving unprecedented bifunctional performance: at - 0.

View Article and Find Full Text PDF