Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Banana (Musa sp.) is cultivated worldwide and is one of the most popular fruits. The soil-borne fungal disease Fusarium wilt of banana (FWB), commonly known as Panama disease, is caused by Fusarium oxysporum f. sp. cubense (Foc) and is a highly lethal vascular fungal disease in banana plants. Raman spectroscopy, an emerging laser-based technology based on Raman scattering, has been used for the qualitative characterization of biological tissues such as foodborne pathogens, cancer cells, and melamine. In this study, we describe a Raman spectroscopic technique that could potentially be used as a method for diagnosing FWB. To that end, the Raman fingerprints of Foc (including mycelia and conidia) and Foc-infected banana pseudostems with varying levels of symptoms were determined. Our results showed that eight, eleven, and eleven characteristic surface-enhanced Raman spectroscopy peaks were observed in the mycelia, microconidia, and macroconidia of Foc, respectively. In addition, we constructed the Raman spectroscopic fingerprints of banana pseudostem samples with varying levels of symptoms in order to be able to differentiate Foc-infected bananas from healthy bananas. The rate at which FWB was detected in asymptomatic Foc-infected samples by using the spectral method was 76.2%, which was comparable to the rates previously reported for other FWB detection methods based on real-time PCR assays, suggesting that the spectral method described herein could potentially serve as an alternative tool for detecting FWB in fields. As such, we hope that the developed spectral method will open up new possibilities for the on-site diagnosis of FWB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075571PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230330PLOS

Publication Analysis

Top Keywords

raman spectroscopic
12
spectral method
12
spectroscopic fingerprints
8
fusarium wilt
8
wilt banana
8
fungal disease
8
raman spectroscopy
8
varying levels
8
levels symptoms
8
banana
6

Similar Publications

Vibrational signature of 1B+u and hot 2A-g excited states of carotenoids revisited by femtosecond stimulated Raman spectroscopy.

Phys Chem Chem Phys

September 2025

The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic.

The significance of carotenoids in biological systems cannot be overstated. Their functionality largely arises from unique excited-state dynamics, where photon absorption promotes the molecule to the optically allowed 1B+u state (conventionally S), which rapidly decays to the optically forbidden 2A-g state (S). While the vibrational signature of the S state is well established, that of the initial S state has remained elusive.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) has shown potential for early disease diagnosis via urinary metabolomics, but still faces challenges in achieving stable hot spots and processing complex clinical data. In this study, the preparation of chiral gold nanostars with precisely controllable branch size, number, and sharpness was realized by investigating the effects of l-GSH and CTA ( indicates halides) on site occupancy, reduction rate, and selective adsorption on crystal facets. Raman spectroscopic characterization using rhodamine 6G (R6G) as a reporter molecule revealed that nanoparticles with fewer branches, larger branch bases, and smoother surfaces exhibited excellent SERS activity, with an analytical enhancement factor (AEF) of 5.

View Article and Find Full Text PDF

While deep learning-enhanced Raman spectroscopy enables rapid sample analysis, model portability among spectrometers remains hindered by systematic interdevice variations. In this study, a Low-Rank Adaptation-based Calibration Transfer method (LoRA-CT) is proposed to perform parameter-efficient fine-tuning of deep learning models across spectrometers. By decomposing weight updates into low-rank matrices, LoRA-CT achieves superior calibration transfer with minimal samples, reducing trainable parameters by 600× compared to full parameter fine-tuning.

View Article and Find Full Text PDF

In this study, a one-pot hydrothermal synthesis method was used to synthesize a novel gold-yttrium trimesic acid metal-organic framework (Au-Y-TMA MOF), demonstrating significant improvements over conventional single-metal MOFs, that is, yttrium trimesic acid (Y-TMA), in both supercapacitor applications and electrochemical antibiotic detection. The X-ray diffraction patterns of Au-Y-TMA confirmed the presence and impact of Au in the Y-TMA matrix, while field emission scanning electron microscopy (FE-SEM) images revealed a heterogeneous combination of gold nanoparticles (AuNPs) and Y-TMA, suggesting a nonuniform distribution and possible interaction. The developed half-cell supercapacitor exhibited a remarkable capacitance value of 1836 F/g at a current density of 5 A/g by galvanostatic charging-discharging (GCD) measurement.

View Article and Find Full Text PDF

Raman-based PAT for multi-attribute monitoring during VLP recovery by dual-stage CFF: attribute-specific spectral preprocessing for model transfer.

Front Bioeng Biotechnol

August 2025

Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

Spectroscopic soft sensors are developed by combining spectral data with chemometric modeling, and offer as Process Analytical Technology (PAT) tools powerful insights into biopharmaceutical processing. In this study, soft sensors based on Raman spectroscopy and linear or partial least squares (PLS) regression were developed and successfully transferred to a filtration-based recovery step of precipitated virus-like particles (VLPs). For near real-time monitoring of product accumulation and precipitant depletion, the dual-stage cross-flow filtration (CFF) set-up was equipped with an on-line loop in the second membrane stage.

View Article and Find Full Text PDF