In this study, a one-pot hydrothermal synthesis method was used to synthesize a novel gold-yttrium trimesic acid metal-organic framework (Au-Y-TMA MOF), demonstrating significant improvements over conventional single-metal MOFs, that is, yttrium trimesic acid (Y-TMA), in both supercapacitor applications and electrochemical antibiotic detection. The X-ray diffraction patterns of Au-Y-TMA confirmed the presence and impact of Au in the Y-TMA matrix, while field emission scanning electron microscopy (FE-SEM) images revealed a heterogeneous combination of gold nanoparticles (AuNPs) and Y-TMA, suggesting a nonuniform distribution and possible interaction. The developed half-cell supercapacitor exhibited a remarkable capacitance value of 1836 F/g at a current density of 5 A/g by galvanostatic charging-discharging (GCD) measurement.
View Article and Find Full Text PDFLayer-by-layer (LbL) immobilization of DNA aptamers in the realm of electrochemical detection of heavy metal ions (HMIs) offers an enhancement in specificity, sensitivity, and low detection limits by leveraging the cross-reactivity obtained from multiple interactions between immobilized aptamers and developed material surfaces. In this research, we present a LbL approach for the immobilization of thiol- and amino-modified DNA aptamers on a Ag-incorporated cobalt-succinate metal-organic framework (MOF) (Ag@Co-Succinate) to achieve a cross-reactive effect on the electrochemical behavior of the sensor. The solvothermal method was utilized to synthesize Ag@Co-Succinate, which was also characterized through various techniques to elucidate its structure, morphology, and presence of functional groups, confirming its suitability as a host matrix for immobilizing both aptamers.
View Article and Find Full Text PDF