Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A novel amphiphilic aggregation-induced emission (AIE) copolymer, that is, , consisting of -isopropylacrylamide (NIPAM) as a hydrophilic unit and a tetraphenylethylene-spiropyran monomer () as a bifluorophoric unit is reported. Upon UV exposure, the close form of non-emissive spiropyran (SP) in can be photo-switched to the open form of emissive merocyanine (MC) in in an aqueous solution, leading to ratiometric fluorescence of AIEgens between green TPE and red MC emissions at 517 and 627 nm, respectively, via Förster resonance energy transfer (FRET). Distinct FRET processes of can be observed under various UV and visible light irradiations, acid-base conditions, thermal treatments, and cyanide ion interactions, which are also confirmed by theoretical studies. The subtle perturbations of environmental factors, such as UV exposure, pH value, temperature, and cyanide ion, can be detected in aqueous media by distinct ratiometric fluorescence changes of the FRET behavior in the amphiphilic . Moreover, the first FRET sensor polymer based on dual AIEgens of TPE and MC units is developed to show a very high selectivity and sensitivity with a low detection limit (LOD = 0.26 μM) toward the cyanide ion in water, which only contain an approximately 1% molar ratio of the bifluorophoric content and can be utilized in cellular bioimaging applications for cyanide detections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325583PMC
http://dx.doi.org/10.1021/acsami.9b21970DOI Listing

Publication Analysis

Top Keywords

cyanide ion
12
fret processes
8
aqueous media
8
ratiometric fluorescence
8
fret
5
cyanide
5
multi-stimuli responsive
4
responsive fret
4
processes bifluorophoric
4
bifluorophoric aiegens
4

Similar Publications

Ionic liquids (ILs) have been gaining increasing focus in a variety of applications including emerging electric-propulsion concepts. A quantitative understanding of how IL ions fragment during high-energy collisions with background gases is therefore essential for interpreting mass spectra, predicting ion lifetimes in plasma and vacuum environments, and designing IL-based technologies. This work uses molecular dynamics (MD) simulations with a reactive force field to numerically model the collision-induced dissociation (CID) of isolated ions (both positive and negative) and ion clusters (2:1 and 1:2 clusters) of the prototypical ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF), colliding with a nitrogen (N) molecule, exploring all possible fragmentation channels arising from the breaking of both ionic and covalent bonds at collision energies ranging from 10 electron volts (eV) to 100 electron volts (eV) in the laboratory frame.

View Article and Find Full Text PDF

Prussian Blue Nanoparticle-Induced Alteration of the Polarization State of Tumor-Associated Macrophages as a Substantial Antitumor Mechanism Against Oral Squamous Cell Carcinoma (OSCC).

Int J Nanomedicine

September 2025

Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, People's Republic of China.

Introduction: Oral squamous cell carcinoma (OSCC) has a poor prognosis due to its immunosuppressive tumor microenvironment (TME), in which tumor-associated macrophages (TAMs) play a pivotal role in promoting disease progression and therapeutic resistance. This study examines whether Prussian blue nanoparticles (PB NPs) could reprogram TAMs and block tumor-stroma communication in OSCC.

Methods: PB NPs were synthesized using polyvinylpyrrolidone-assisted coprecipitation and characterized by transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy.

View Article and Find Full Text PDF

Gold/Prussian Blue-Based Nanocomposites with Dual Nanozyme Activities Exert a Synergistic Effect of Starvation Therapy and Sonodynamic Therapy in the Treatment of Liver Cancer.

Int J Nanomedicine

September 2025

School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.

Purpose: This study aimed to develop a composite nanozyme system (Au/PB-Ce6-HA) based on gold nanoparticles (AuNPs) and Prussian blue nanoparticles (PBNPs) to combat tumor hypoxia and insufficient endogenous hydrogen peroxide (HO) deficiency, thus enhancing the efficacy of sonodynamic therapy (SDT) and starvation therapy for liver cancer.

Methods: The Au/PB-Ce6-HA system was constructed by in situ embedding AuNPs on PBNPs, loading the sonosensitizer Chlorin e6 (Ce6), and surface-coating with thiolated hyaluronic acid (HA-SH). The system was evaluated both in vitro and in vivo to assess its ability to catalyze glucose to generate HO, decompose HO to produce oxygen, and generate highly toxic reactive oxygen species (ROS) under ultrasound irradiation.

View Article and Find Full Text PDF

Alkaline UV/PAA synergistic degradation of iron-cyanide complexes: UV-driven ligand disruption and radical oxidation pathways.

Water Res

September 2025

Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.

The advanced degradation of ferricyanide ([Fe(CN)₆]³⁻) in industrial wastewater faces dual bottlenecks of self-acidification-induced hydrogen cyanide (HCN) release and inefficient decomplexation. This study innovatively constructs an alkaline UV/Peracetic Acid (PAA) synergistic system and systematically elucidates its triple action mechanism: (1) UV irradiation at 254 nm directly drives ligand-to-metal charge transfer (LMCT) excitation of ferricyanide, achieving efficient Fe-CN bond breaking (Φ₂₅₄ = 0.235-0.

View Article and Find Full Text PDF

To establish a method for determination of two derivatives of cyanide in biomaterials by headspace gas chromatography mass spectrometry. In February 2024, blood and urine samples were placed in headspace sampling vials. Phosphoric acid, or phosphoric acid and chloramine T solution, was added respectively to derivatize cyanide into hydrogen cyanide or cyanogen chloride.

View Article and Find Full Text PDF