Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To establish a method for determination of two derivatives of cyanide in biomaterials by headspace gas chromatography mass spectrometry. In February 2024, blood and urine samples were placed in headspace sampling vials. Phosphoric acid, or phosphoric acid and chloramine T solution, was added respectively to derivatize cyanide into hydrogen cyanide or cyanogen chloride. After equilibrating at 80°C for 15 minutes, headspace sampling was performed. The samples were separated by a GS-GasPro chromatographic column and determined by gas chromatography-mass spectrometry in selected ion monitoring (SIM) mode. Qualitative analysis was conducted using both retention time and the ratio of characteristic ions, and quantitative analysis was carried out by the external standard method. The correlation coefficients (r) for the two derivatives was 0.9992 and 0.9984, respectively. The detection limits was 0.10 μg/ml and 0.05 μg/ml, respectively. The recoveries ranged from 73.7% to 98.4%, with precision (RSD) ranging from 3.3% to 14.2%. The method offers the advantages of simple operation, precise quantification, high qualitative reliability, and high sensitivity, making it suitable for cyanide detection in biological materials.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.cn121094-20240513-00214DOI Listing

Publication Analysis

Top Keywords

derivatives cyanide
8
cyanide biomaterials
8
gas chromatography
8
chromatography mass
8
headspace sampling
8
phosphoric acid
8
cyanide
5
[determination derivatives
4
biomaterials headspacegas
4
headspacegas gas
4

Similar Publications

Organophosphorus nerve agents (OPNAs), including G-agents, EGA (ethyltabun, phosphonamidic acid, P-cyano-N,N-diethyl-, ethyl ester) and V-agents, VM (O-ethyl S-(2-diethylaminoethyl) phosphonothiolate), are highly toxic chemical warfare agents (CWAs) with severe risks to human health and environmental security. This study proposes a chemometric-driven framework for forensic tracing of their synthetic pathways using high-resolution GC × GC-TOFMS. By integrating advanced statistical analysis, we identified 160 synthesis-associated chemical attribution signatures (CAS) for EGA and 138 process-specific CAS for VM, with 11 overlapping markers, including ethoxyphosphates and diethylaminoethylamine derivatives.

View Article and Find Full Text PDF

Azolo[1,5-]pyrimidines (APs) are widely recognized as challenging scaffolds for diverse applications in both medicinal chemistry and materials science. Owing to their high potential, active research is focused on developing new derivatives through the derivatization and functionalization of their molecular structure. Herein, we report an unusual transformation in the AP series initiated by a hydroperoxide anion.

View Article and Find Full Text PDF

Alkaline UV/PAA synergistic degradation of iron-cyanide complexes: UV-driven ligand disruption and radical oxidation pathways.

Water Res

September 2025

Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.

The advanced degradation of ferricyanide ([Fe(CN)₆]³⁻) in industrial wastewater faces dual bottlenecks of self-acidification-induced hydrogen cyanide (HCN) release and inefficient decomplexation. This study innovatively constructs an alkaline UV/Peracetic Acid (PAA) synergistic system and systematically elucidates its triple action mechanism: (1) UV irradiation at 254 nm directly drives ligand-to-metal charge transfer (LMCT) excitation of ferricyanide, achieving efficient Fe-CN bond breaking (Φ₂₅₄ = 0.235-0.

View Article and Find Full Text PDF

To establish a method for determination of two derivatives of cyanide in biomaterials by headspace gas chromatography mass spectrometry. In February 2024, blood and urine samples were placed in headspace sampling vials. Phosphoric acid, or phosphoric acid and chloramine T solution, was added respectively to derivatize cyanide into hydrogen cyanide or cyanogen chloride.

View Article and Find Full Text PDF

With the increasing emphasis on environmental safety, food inspection, and plant physiological functions, the development of high-performance fluorescent probes capable of highly sensitive, specific, rapid, and visual detection of target analytes has become a focal point in current research. Hemicyanine groups are widely utilized in the design of organic small-molecule fluorophores due to their low cost, structural stability, and ease of chemical modification. Through simple structural adjustments, the photoluminescent properties of hemicyanine-based fluorophores can be significantly enhanced, enabling strong signal output and maintaining stable fluorescence intensity across various solvents and pH conditions-features that make them particularly suitable for complex biological and chemical environments.

View Article and Find Full Text PDF