98%
921
2 minutes
20
The abnormal expression of noncoding RNAs has attracted increasing interest in the field of hepatocellular carcinoma progression. However, the underlying molecular mechanisms mediated by noncoding RNAs in these processes are unclear. Here, we obtained the expression profiles of long noncoding RNAs, microRNAs, and mRNAs from the Gene Expression Omnibus database and identified hepatocarcinogenesis-specific differentially expressed transcripts. Next, we identified significant Gene Ontology and pathway terms that the differentially expressed transcripts involved in. Using functional analysis and target prediction, we constructed a hepatocellular carcinoma-associated deregulated competitive endogenous RNA network to reveal the potential mechanisms underlying tumor progression. By analyzing The Cancer Genome Atlas dataset, six key long noncoding RNAs showed significant association with overall survival as well as strong correlation with some microRNAs and mRNAs in the competitive endogenous RNA network. We further validated the above results and determined their diagnostic and prognostic value in clinical samples. Importantly, by large-scale analyses, we identified a cluster of long noncoding RNAs, , , , , , and as candidate biomarkers for the diagnosis and prognosis of hepatocellular carcinoma, which will improve our understanding of competitive endogenous RNA-mediated regulatory mechanisms underlying hepatocellular carcinoma development and will provide novel therapeutic targets in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914412 | PMC |
http://dx.doi.org/10.18632/aging.102468 | DOI Listing |
Plant Cell Environ
September 2025
State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, International Joint R & D Center of Hebei Prov
As essential sources of vegetables, oilseeds, and forage, Brassica crops exhibit complex epigenetic regulation mechanisms involving histone modifications, DNA modifications, RNA modifications, noncoding RNAs, and chromatin remodelling. The agronomic traits and environmental adaptability of crops are regulated by both genetic and epigenetic mechanisms, while epigenetic variation can affect plant phenotypes without changing gene sequences. Furthermore, the impact of epigenetic modifications on plant phenotype has accelerated the crop breeding process.
View Article and Find Full Text PDFMol Plant
September 2025
Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P. R. China; MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen University, Guangzhou 510275, P. R. China. Electronic address:
Long noncoding RNAs (lncRNAs) are emerging as pivotal regulators in gene expression networks, characterized by their structural flexibility and functional versatility. In plants, lncRNAs have gained increasing attention due to accumulating evidence of their roles in modulating developmental plasticity and agronomic traits. In this review, we focus on the origin, classification, and mechanisms of action of plant lncRNAs, with a particular emphasis on their involvement in developmental processes.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Inner Mongolia Medical University Affiliated Hospital, Hohhot, 010030, Inner Mongolia, China.
Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.
View Article and Find Full Text PDFNature
September 2025
Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
Cancer-associated muscle wasting is associated with poor clinical outcomes, but its underlying biology is largely uncharted in humans. Unbiased analysis of the RNAome (coding and non-coding RNAs) with unsupervised clustering using integrative non-negative matrix factorization provides a means of identifying distinct molecular subtypes and was applied here to muscle of patients with colorectal or pancreatic cancer. Rectus abdominis biopsies from 84 patients were profiled using high-throughput next-generation sequencing.
View Article and Find Full Text PDFNat Commun
September 2025
Guangdong Provincial Key Laboratory of Bioengineering Medicine & National Engineering Research Center of Genetic Medicine, Department of Cell Biology and Institute of Biomedicine, Jinan University, Huang-Pu Avenue West 601, Guangzhou, 510632, China.