Smart Sampling and Probing: Are You Getting All the Relevant Information?

J AOAC Int

Koszalin University of Technology, Faculty of Civil Engineering, Environmental and Geodetic Sciences, Department of Environmental Technologies and Bioanalytics, Sniadeckich 2, Koszalin 75-453, Poland.

Published: April 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Sampling (collecting) and probing (testing, measuring) are very common tasks in the analytical field, where we need to characterize a given system and complex samples. In this action, we try to ensemble maximal information related with the system under a given study, and, frequently, we may end an inefficient analytical situation.

Objective: The best way to avoid "oversampling" and "overprobing" is to evaluate the number of factors and objects that may be present in a current data set.

Methods: Suggested methodology in data analysis is mainly related with principal component analysis and principal object analysis. All used simulations and other controlled situations were here used to demonstrate how to retrieve the number of factors and objects present in a given data set and allow to supervise all sampling and probing process.

Results And Conclusions: In this work, we explain and suggest how to use eigenvalue decomposition to access the actual number of factors and object contributions. A large pool of datasets were tested in order to assess the number of relevant features present in each dataset.

Highlights: Proposed numerical approach was designed to supervise and help in sampling and probing process for the efficient analysis of complex systems such as those involving food and environmental samples.

Download full-text PDF

Source
http://dx.doi.org/10.5740/jaoacint.19-0269DOI Listing

Publication Analysis

Top Keywords

sampling probing
12
number factors
12
factors objects
8
analysis principal
8
smart sampling
4
probing
4
probing relevant
4
relevant information?
4
information? background
4
background sampling
4

Similar Publications

Invasive ductal carcinoma (IDC) is a major type of breast cancer. The utilization of inhibitors targeting histone methyltransferases introduces novel therapeutic avenues for the treatment of cancer. Immunohistochemistry, Western blot, and reverse transcription quantitative polymerase chain reaction experiments were applied to assess the levels of EHMT2 in IDC and adjacent tissues.

View Article and Find Full Text PDF

Peptide Sequence Modulating the Analytical Performance of Electrogenerated Chemiluminescence Peptide-Based Biosensors for Matrix Metalloproteinase 2.

Anal Chem

September 2025

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.

Electrogenerated chemiluminescence (ECL) methods have been widely used in clinical diagnosis. Although ECL peptide-based biosensors continue to grow with good sensitivity and signal flexibility, little emphasis has been placed on the effect of the peptide sequence on ECL sensitivity. We herein studied the nuanced effects of different peptide sequences on the analytical performance of ECL peptide-based biosensors for matrix metalloproteinase 2 (MMP-2) assay, in which [(pbz)Ir(DMSO)Cl] (pbz = 3-(2-pyridyl)benzoic acid) was used as the ECL emitter while a specific peptide was used as the molecular recognition element.

View Article and Find Full Text PDF

Direct Etching Silicon Carbide Via Electro-Enhanced Catalytic Reactions.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310058, China.

We report an electro-enhanced catalytic etching approach for direct atomic-level patterning of single-crystal 4H-SiC (0001) surfaces. The process utilizes platinum-coated probes under a negative sample bias, which enhances catalytic reactions and promotes etching of SiC without additional mechanical load. Unlike traditional etching approaches that rely on hazardous chemicals such as hydrofluoric acid, this approach operates under ambient conditions, offering improved safety and environmental compatibility.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic autoimmune disease in which dysregulated interferon regulatory factor 5 (IRF5) may amplify pro-inflammatory pathways; prior genetic studies of IRF5 single-nucleotide variants (SNVs) in RA are inconsistent across populations and have not included mestizo Mexicans or evaluated rs59110799 in RA. We aimed to test whether four IRF5 SNVs (rs2004640G/T, rs2070197T/C, rs10954213G/A, rs59110799G/T) confer susceptibility to RA in women from Central Mexico. In a case-control study of 239 women with RA and 231 female controls (all self-identified Mexican-Mestizos, ≥3 generations), genotyping was performed by real-time PCR with TaqMan® probes; 80% of samples were duplicated (100% concordance) and control genotypes conformed to Hardy-Weinberg equilibrium.

View Article and Find Full Text PDF

The dynamics of the different constituents of the ionic liquid 1-hexyl-3-methylimidazolium chloride (HmimCl) is investigated using nuclear magnetic resonance including chlorine relaxometry, line shape analysis, and proton-detected diffusometry, as well as frequency-dependent shear mechanical measurements. This combination of techniques is useful to probe the individual motions of the anions and the cations, and the sample's overall flow response. The 35Cl- dynamics appears to be close to the structural (or α-) relaxation as seen by rheology.

View Article and Find Full Text PDF