98%
921
2 minutes
20
Controlling the nanoscale morphology of conducting polymer/nanoparticle hybrid films is a highly desired but challenging task. Here, we report that such functional hybrid films with unprecedented structural order can be formed through the self-assembly of conjugated block copolymers and CdSe quantum dots at the air-water interface. The one-step assembly of quantum dots and block copolymers composed of polythiophene and polyethylene glycol (P3HT--PEG) at the fluidic interface generated a highly ordered assembly structure of P3HT nanowires and one-dimensional quantum dot arrays. Structure analyses revealed a unique self-assembly behavior and size dependency, which are distinct from the conventional self-assembly of coil-type polymers on solid substrates. Interestingly, hydrophobic quantum dots reside at the interface between P3HT and PEG domains without disrupting the P3HT packing structure, which is advantageous for the optoelectronic properties. Furthermore, large particles bridge the P3HT nanowires at both ends, while small particles decorate each P3HT/PEG interfaces, thus forming tight p-n junctions for a broad size range of nanoparticles. The nanoparticle-incorporated hybrid films showed more than an order of magnitude higher photocurrent and light sensitivity compared to polymer-only films, consistent with the assembly structure with close contact between the organic and inorganic semiconductors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b08892 | DOI Listing |
Chem Commun (Camb)
September 2025
College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China.
A machine learning-designed "supramolecular armor" imparts exceptional stability to perovskite quantum dots. A guanidinium crosslinker reinforces a β-cyclodextrin layer, creating a robust yet permeable interface that enables direct contact sensing in challenging aqueous environments.
View Article and Find Full Text PDFACS Nano
September 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.
Airborne pathogens and pollution control typically necessitate multiple membranes, each specializing in efficient aerosol filtration, moisture regulation, or antimicrobial protection. Integrating all these functions into a single membrane is highly advantageous but remains inherently challenging due to material incompatibility and inevitable performance trade-offs. Here, we present a photoactive Janus nanofibrous membrane for highly efficient air purification, engineered via sequential electrospinning.
View Article and Find Full Text PDFNanoscale Adv
August 2025
Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research S.A.S. Nagar Mohali 160062 Punjab India
Nitrosamines are genotoxic, mutagenic impurities and are widely encountered in the global landscape of the pharmaceutical industry. There is a need for rapid detection of nitrosamines in a pharmaceutical product. Here, we report the synthesis of carbon quantum dots (CQDs) using a readily available carbon precursor.
View Article and Find Full Text PDFThe formation of heterostructure interfaces from quantum dots (or nanocrystals) and lower-dimensional (2D or quasi-2D) materials enables interfacial and optoelectronic property tuning. However, this strategy has not been sufficiently characterized, for example, the application of cesium halide nanocrystals to quasi-2D perovskite structures is underexplored, and the mechanisms of the resulting structural modifications and specific nanocrystal roles are not fully understood. Herein, the effects of postsynthetically surface-modifying quasi-2D perovskite films with CsX ( = Cl, Br, I) nanocrystals are examined to bridge this gap.
View Article and Find Full Text PDFSmall Sci
September 2025
Infrared photodetectors are crucial for autonomous driving, providing reliable object detection under challenging lighting conditions. However, conventional silicon-based devices are limited in their responsivity beyond 1100 nm. Here, a scallop-structured silicon photodetector integrated with tin-substituted perovskite quantum dots (PQDs) that effectively extends infrared detection is demonstrated.
View Article and Find Full Text PDF