98%
921
2 minutes
20
Spikelet is the primary reproductive structure and a critical determinant of grain yield in rice. The molecular mechanisms regulating rice spikelet development still remain largely unclear. Here, we report that mutations in OsPEX5, which encodes a peroxisomal targeting sequence 1 (PTS1) receptor protein, cause abnormal spikelet morphology. We show that OsPEX5 can physically interact with OsOPR7, an enzyme involved in jasmonic acid (JA) biosynthesis and is required for its import into peroxisome. Similar to Ospex5 mutant, the knockout mutant of OsOPR7 generated via CRISPR-Cas9 technology has reduced levels of endogenous JA and also displays an abnormal spikelet phenotype. Application of exogenous JA can partially rescue the abnormal spikelet phenotype of Ospex5 and Osopr7. Furthermore, we show that OsMYC2 directly binds to the promoters of OsMADS1, OsMADS7 and OsMADS14 to activate their expression, and subsequently regulate spikelet development. Our results suggest that OsPEX5 plays a critical role in regulating spikelet development through mediating peroxisomal import of OsOPR7, therefore providing new insights into regulation of JA biosynthesis in plants and expanding our understanding of the biological role of JA in regulating rice reproduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.16037 | DOI Listing |
Plant Physiol
September 2025
Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
Polyploidization is a driving force of wheat (Triticum aestivum) evolution and speciation, yet its impact on epigenetic regulation and gene expression remains unclear. Here, we constructed a high-resolution epigenetic landscape across leaves, spikes, and roots of hexaploid wheat and its tetraploid and diploid relatives. Inter-species stably expressed genes exhibited conserved amino acid sequences under strong purifying selection, while dynamically expressed genes were linked to species-specific adaptation.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
Panicle architecture is largely determined by meristem activity. This previous study shows that DNA binding with one finger (Dof) transcription factor Short Panicle 3 (SP3) regulates panicle architecture. However, the molecular mechanisms of SP3 controlling panicle architecture remain largely unknown.
View Article and Find Full Text PDFPhysiol Plant
September 2025
State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China.
The Gα subunit RGA1, a crucial component of heterotrimeric G proteins, has been well-documented to enhance drought resistance in rice seedlings. However, its role during the reproductive stages has remained unexplored. This study aimed to investigate the function of RGA1 in mitigating drought-induced defects in anther and pollen development during pollen mother cell meiosis with Zhonghua 11 (WT), a Gα-deficient mutant (d1), and an RGA1-overexpressing line (OE-1).
View Article and Find Full Text PDFPlants (Basel)
August 2025
Department of Botany, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil.
Rice ( L.) plays a pivotal role in the Brazilian economy, serving as a staple food for more than half of the world's population and thereby contributing to global food security. Projections of future climate change scenarios indicate an increase in extreme weather events.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Agronomy College, Jilin Agricultural University, Changchun, China.
Introduction: Direct-seeded rice is characterized by simplicity, efficiency, and environmental friendliness, with its planting area progressively expanding. However, inappropriate seeding rates can result in issues such as lodging and reduced productive tillers, thereby constraining yield potential. Consequently, this study investigated the response mechanisms of tillering, the heterogeneity between main stems and tillers, and the susceptibility to lodging under varying seeding rates in direct-seeded rice.
View Article and Find Full Text PDF