98%
921
2 minutes
20
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system, thought to be mediated by myelin-specific CD4+ T cells. However, B cell depletion has proven to be an effective therapy for MS, but the mechanism is not well understood. This study was designed to determine how B cell depletion changes lymphocyte profiles. During a phase IIa clinical trial with ublituximab, a novel CD20 antibody, blood was collected from 48 MS patients at 11 time points over 24 weeks and the lymphocyte profiles were analyzed by flow cytometry. The percentage of naïve CD4+ and CD8+ T cells increased, while the percentage of both effector and central memory T cells declined. CD4+ Th1 effector cells decreased, while there was a significant increase in CD4+ regulatory T cells. The depletion of B cells had a favorable shift in the lymphocyte landscape, reducing the number of naïve T cells becoming activated and transitioning to memory T cells. The ratio of Th1 cells to CD4+ regulatory T cells declined, suggesting that immune regulation was being restored. These data suggest that loss of B cells as antigen presenting cells is a major mechanism of action for the beneficial effects of CD20 antibody therapy in MS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneuroim.2019.04.017 | DOI Listing |
Eur J Case Rep Intern Med
August 2025
Department of Internal Medicine, Wayne State University School of Medicine, Trinity Health Oakland Hospital, Pontiac, USA.
Background: Invasive central nervous system (CNS) aspergillosis is rare among human immunodeficiency virus (HIV)-positive patients due to preserved neutrophil function, despite significant CD4+ T-cell depletion. Diagnosis typically requires histopathologic confirmation, but polymerase chain reaction (PCR) testing has introduced new challenges due to its high sensitivity but limited specificity.
Case Presentation: We describe a newly diagnosed 43-year-old HIV-positive male with concurrent Hodgkin lymphoma who presented with progressive neurological decline and a ring-enhancing brain lesion.
Mol Pharm
September 2025
Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
Radiopharmaceutical therapy (RPT) is a therapeutic strategy that delivers radionuclides in a targeted manner to achieve precise radiation-induced killing of tumor cells. While RPT primarily induces tumor cell death through apoptosis, resistance to apoptosis has been identified as a key mechanism underlying the radioresistance. Therefore, integrating nonapoptotic cell death pathways with RPT offers a promising strategy to enhance its therapeutic efficacy.
View Article and Find Full Text PDFCell Mol Immunol
September 2025
Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
Gut-derived metabolites are essential for liver fibrogenesis. The aim of this study was to determine the alteration of indole-3-propionic acid (IPA), a crucial tryptophan metabolite, in liver fibrosis and delineate the roles of enterogenic IPA in fibrogenesis. In the present study, metabolomics assays focused on tryptophan metabolism were applied to explore the decreased levels of IPA in the feces and serum of cirrhotic patients, as well as in the feces and portal vein serum of fibrotic mice.
View Article and Find Full Text PDFCommun Biol
September 2025
Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Sleep is a complex behavior regulated by various brain cell types. However, the roles of brain-resident macrophages, including microglia and CNS-associated macrophages (CAMs), particularly those derived postnatally, in sleep regulation remain poorly understood. Here, we investigated the effects of resident (embryo-derived) and repopulated (postnatally derived) brain-resident macrophages on the regulation of vigilance states in mice.
View Article and Find Full Text PDFChem Res Toxicol
September 2025
University of Texas Medical Branch, Galveston, Texas 77555, United States.
Glioblastoma (GBM) is a lethal brain tumor with limited therapeutic options. Temozolomide (TMZ), a standard-of-care chemotherapeutic agent, exerts its cytotoxicity by alkylating DNA, which triggers a DNA damage response and depletes ATP and NAD. However, TMZ also releases the byproduct 4-amino-5-imidazole carboxamide (AIC), which is believed to be a benign metabolite.
View Article and Find Full Text PDF