98%
921
2 minutes
20
Most factories discharge untreated wastewater to reduce costs, causing serious environmental problems. Low-cost, biological, environmentally friendly and highly effective materials for the separation of emulsified oil/water mixtures are thus in great demand. In this study, a simple, green method was developed for separating oil-in-water emulsions. A corn straw powder (CSP)-nylon 6,6 membrane (CSPNM) was fabricated by a phase inversion process without any further chemical modification. The CSPNM showed superhydrophilic and underwater superoleophobic properties and could be used for the separation of oil-in-water emulsion with high separation efficiency and flux. The CSPNM maintained excellent separation ability after 20 cycles of separation with an oil rejection >99.60%, and the oil rejection and flux have no obvious change with an increasing number of cycles, suggesting a good antifouling property and the structural stability of CSPNM. In addition, the CSPNM exhibited excellent thermal and chemical stability under harsh conditions of high temperature and varying pH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415185 | PMC |
http://dx.doi.org/10.3390/polym10030323 | DOI Listing |
Anal Chim Acta
November 2025
Department of Physics, University of Lucknow, Lucknow, India; Department of Physics and Astrophysics, University of Delhi, India. Electronic address:
Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of Ministry of Education, Bao
Background: In the contemporary era of rapid digital advancement, information security is closely associated with our daily life. From personal information to state secrets, all domains are intricately linked with information. Consequently, the significance of information security has garnered growing attention from an ever-increasing number of individuals.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran; Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran. Electronic address:
Background: Determination of the estradiol hormone in urine is crucial for evaluating congenital adrenal hyperplasia, certain hormone-producing ovarian tumors, polycystic ovary syndrome, liver disease, pregnancy, and infertility. On the other hand, steroid hormones can have destructive effects on the environment, animals, and the endocrine system of humans. Consequently, accurately measuring this hormone's concentration in trace amounts is essential for environmental safety and human health.
View Article and Find Full Text PDFJ Chromatogr A
September 2025
College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
Synthetic cathinones (SCs) are drugs of abuse that act on the central nervous system, producing psychoactive effects similar to those of amphetamines. Their greater accessibility compared with the traditional amphetamine-type stimulants has contributed to their increasing popularity in recent years. The analysis of SCs in biological samples is essential for documenting their consumption.
View Article and Find Full Text PDFChem Asian J
September 2025
Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, Shandong, 250022, P. R. China.
Transparent meltable glasses are keenly desired for making color-conversion layer of Mini-LEDs. In this work, transparent luminescent organic glasses were prepared using a new matrix of heptyltriphenylphosphonium bromide (CHBrP, HTPBr). Through doping of a blue dye (9,10-diphenylanthracene, DPA), the resulting glass exhibited a high transparency (92%) and a blue emission at 436 nm.
View Article and Find Full Text PDF