98%
921
2 minutes
20
QacA is a drug:H antiporter with 14 transmembrane helices that confers antibacterial resistance to methicillin-resistant Staphylococcus aureus strains, with homologs in other pathogenic organisms. It is a highly promiscuous antiporter, capable of H-driven efflux of a wide array of cationic antibacterial compounds and dyes. Our study, using a homology model of QacA, reveals a group of six protonatable residues in its vestibule. Systematic mutagenesis resulted in the identification of D34 (TM1), and a cluster of acidic residues in TM13 including E407 and D411 and D323 in TM10, as being crucial for substrate recognition and transport of monovalent and divalent cationic antibacterial compounds. The transport and binding properties of QacA and its mutants were explored using whole cells, inside-out vesicles, substrate-induced H release and microscale thermophoresis-based assays. The activity of purified QacA was also observed using proteoliposome-based substrate-induced H transport assay. Our results identify two sites, D34 and D411 as vital players in substrate recognition, while E407 facilitates substrate efflux as a protonation site. We also observe that E407 plays an additional role as a substrate recognition site for the transport of dequalinium, a divalent quaternary ammonium compound. These observations rationalize the promiscuity of QacA for diverse substrates. The study unravels the role of acidic residues in QacA with implications for substrate recognition, promiscuity and processive transport in multidrug efflux transporters, related to QacA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212025 | PMC |
http://dx.doi.org/10.1016/j.jmb.2019.03.015 | DOI Listing |
J Biomed Sci
September 2025
Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
Background: PPM1D (protein phosphatase Mg⁺/Mn⁺ dependent 1D) is a Ser/Thr phosphatase that negatively regulates p53 and functions as an oncogenic driver. Its gene amplification and overexpression are frequently observed in various malignancies and disruption of PPM1D degradation has also been reported as a cause of cancer progression. However, the precise mechanisms regulating PPM1D stability remain to be elucidated.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
College of Chemistry and Molecular Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, P. R. China.
The in-depth integration of gene regulation with protein modulation can enhance cellular information processing, yet it is significantly constrained by ineffective and complex protein-to-gene transduction strategies. Herein, we developed a simple protease-guided autocatalytic gene silencing platform named iPAD (intelligent peptide-programmed deoxyribonuclease) that converts the protease recognition events into versatile DNA readout signals by rationally designing a native protease-responsive cationic peptide (PP) to efficiently modulate the DNAzyme (Dz) activity. Without requiring additional chemical modifications, the multifunctional PP regulator consists simply of one cell-specific targeting peptide segment and two cationic peptide segments isolated by one protease-specific peptide substrate.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Despite great advances in decarbonylation of aldehydes using noble metals, the reaction is largely limited to high reaction temperatures and displays poor functional group tolerance. Herein, we report photo-irradiated decarbonylation of aldehydes, promoted by -W(N)(dppe), at room temperature. A wide range of substrates with diverse functional groups underwent decarbonylation efficiently to give the corresponding arene and alkane products in moderate to high yields.
View Article and Find Full Text PDFCell Mol Immunol
September 2025
Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology; Taikang Center for Life and Medical Sciences; State Key Laboratory of Virology; Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, Hubei, 430071,
Upon DNA virus infection, cGAS senses viral DNA and triggers MITA (also called STING)-dependent induction of type I interferons (IFN-Is) and other cytokines/chemokines. IFN-Is further activate STAT1/2 to induce interferon-stimulated genes (ISGs) and the innate antiviral response. How the innate antiviral response is silenced in uninfected cells and efficiently mounts upon viral infection is not fully understood.
View Article and Find Full Text PDFLight Sci Appl
September 2025
State Key Laboratory of Flexible Electronics, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China.
As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components.
View Article and Find Full Text PDF