98%
921
2 minutes
20
Tibetan pigs, indigenous to Tibetan plateau, are well adapted to hypoxia. So far, there have been not any definitively described genes and functional sites responsible for hypoxia adaptation for the Tibetan pig. The whole genome-wide association studies in human suggested that genetic variations in TMPRSS6 was associated with hemoglobin concentration (HGB) and red cell counts (RBC). Here we conducted resequencing of the nearly entire genomic region (40.1 kb) of the candidate gene TMPRSS6 in 40 domestic pigs and 40 wild boars along continuous altitudes and identified 708 SNPs, in addition to an indel (CGTG/----) in the intron 10. We conduct the CGTG indel in 838 domestic pigs, both the CGTG deletion frequency and the pairwise r linkage disequilibrium showed an increase with elevated altitudes, suggesting that TMPRSS6 has been under Darwinian positive selection. As the conserved core sequence of hypoxia-response elements (HREs), the deletion of CGTG in Tibetan pigs decreased the expression levels of TMPRSS6 mRNA and protein in the liver revealed by real-time quantitative PCR and western blot, respectively. We compared domestic pigs and Tibetan pigs living continuous altitudes, found that the blood-related traits with the increase of altitude, however, the HGB did not increase with the elevation in Tibetan pigs. Genotype association analysis results dissected a genetic effect on reducing HGB by 13.25 g/L in Gongbo'gyamda Tibetan pigs, decreasing mean corpuscular volume (MCV) by 4.79 fl in Diqing Tibetan pigs. In conclusion, the CGTG deletion of TMPRSS6 resulted in lower HGB and smaller MCV, which could reflect a blunting erythropoiesis and improving blood viscosity as well as erythrocyte deformability. It remains to be determined whether a blunting of erythropoiesis for TMPRSS6 or others genetic effects are the physiological adaptations among Tibetan pigs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpb.2019.03.003 | DOI Listing |
Bioorg Chem
September 2025
The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, North
The high prevalence and drug resistance of superficial fungal infections (SFIs) pose a serious global public health challenge, urgently necessitating the development of novel antifungal drugs with unique structures and novel targets. Evodiamine derivatives are promising antifungal drug leads, yet they suffer from suboptimal activity and unclear action mechanisms. In this study, a series of N(14)-phenyl evodiamine derivatives were designed, synthesized and tested for their biological activities.
View Article and Find Full Text PDFAnimals (Basel)
August 2025
Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
This study aimed to evaluate the impacts of dietary inclusion of citrus pomace on growth performance, intestinal morphology, digestive enzyme activity, antioxidant status, and colonic microbiota in Tibetan pigs in a 90-day feeding trial. Eighty Tibetan pigs (75-day-age, 16.62 ± 1.
View Article and Find Full Text PDFMetabolites
August 2025
College of Animal Science, Xizang Agriculture and Animal Husbandry University, Linzhi 860000, China.
The aim of this study was to explore the effects of diets with different protein levels on the metabolite composition and metabolic pathways of the longest dorsal muscle of Tibetan pigs, in order to provide a metabolic basis for optimizing the nutritional regulation strategy of Tibetan pigs. A total of 32 healthy 180-day-old depopulated male Tibetan pigs were randomly divided into four groups and fed diets with protein levels of 10%, 12%, 14%, and 16%, respectively, with a feeding cycle of 8 weeks. The longest dorsal muscle samples were collected, and their metabolic profiles were systematically analyzed by LC-MS non-targeted metabolomics.
View Article and Find Full Text PDFAnimals (Basel)
July 2025
College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
Although age-related changes in the gut microbiome of pigs have been extensively studied, the dynamic patterns of fecal microbiota and SCFAs during the gestation-to-weaning period in sows remain poorly characterized. We aim to characterize the changes in fecal microbiota and SCFAs from pregnancy to weaning, and to investigate their associations with maternal weight gain during gestation. We systematically collected 100 fecal samples at four time points (day 30 of pregnancy (T1), 1-2 days before delivery (T2), day 10 after delivery (T3), and day 21 of weaning stage (T3)), and measured the body weight of sows at T1 (132 kg ± 10.
View Article and Find Full Text PDFBMC Genomics
August 2025
Hunan Agricultural University & Yuelushan Laboratory & Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha, 410128, China.
Background: Growth retardation is a globally prevalent clinical issue, particularly in preterm offspring. It frequently occurs during the early postnatal development of piglets and results in high mortality. In addition to slow postnatal growth caused by complications from immature organs, these offspring are also at risk of facing significant long-term health challenges in adulthood.
View Article and Find Full Text PDF