98%
921
2 minutes
20
In order to overcome the limitations in range of traditional prism structure surface plasmon resonance (SPR) single-point sensor measurement, a symmetric bimetallic film SPR multi-sensor structure is proposed. Based on this, the dual-channel sensing attenuation mechanism of SPR in gold and silver composite film and the improvement of sensing characteristics were studied. By optimizing the characteristics such as material and thickness, a wider range of dual-channel distributed sensing is realized. Using a He-Ne laser (632.8 nm) as the reference light source, prism-excited symmetric SPR sensing was studied theoretically for a symmetrical metal-clad dielectric waveguide using thin-film optics theory. The influence of the angle of incidence of the light source and the thickness of the dielectric layer on the performance of SPR dual formant sensing is explained. The finite-difference time-domain method was used for the simulation calculation for various thicknesses and compositions of the symmetric combined layer, resulting in the choice of silver (30 nm) and gold (10 nm). When the incident angle was 78 deg, the quality factor reached 5960, showing an excellent resonance sensing effect. The sensitivity reached a maximum of 5.25×10 RIU when testing the water content of an aqueous solution of honey, which proves the feasibility and practicality of the structure design. The structure improves the theoretical basis for designing an SPR multi-channel distributed sensing system, which can greatly reduce the cost of biochemical detection and significantly increase the detection efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.57.007591 | DOI Listing |
Front Public Health
September 2025
Department of Personnel Strategies, Institute of Management, Collegium of Management and Finance, SGH Warsaw School of Economics, Warsaw, Poland.
Introduction: Organizational resilience is of paramount importance for coping with adversity, particularly in the healthcare sector during crises. The objective of the present study was to evaluate the impact of resilience-based interventions on the well-being of healthcare employees during the pandemic. In this study, resilience-based interventions are defined as organizational actions that strengthen a healthcare institution's capacity to cope with crises-such as ensuring adequate personal protective equipment and staff testing, clear risk-communication, alternative care pathways (e.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Laboratory of Quantum Information, University of Science and Technology of China, 230026, Hefei, China.
Quantum imaging with spatially entangled photons offers advantages such as enhanced spatial resolution, robustness against noise, and counterintuitive phenomena, while a biphoton spatial aberration generally degrades its performance. Biphoton aberration correction has been achieved by using classical beams to detect the aberration source or scanning the correction phase on biphotons if the source is unreachable. Here, a new method named position-correlated biphoton Shack-Hartmann wavefront sensing is introduced, where the phase pattern added on photon pairs with a strong position correlation is reconstructed from their position centroid distribution at the back focal plane of a microlens array.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.
Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.
View Article and Find Full Text PDFRedox Biol
September 2025
Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321,
Glioblastoma (GBM), the most prevalent and lethal primary malignancy of the central nervous system, remains refractory to conventional photon radiotherapy due to inherent limitations in dose distribution. Although carbon ion radiotherapy offers distinct advantages, including its characteristic Bragg peak deposition and superior relative biological effectiveness, its clinical application is constrained by high costs and increased toxicity. This study explores the radiobiological interactions underlying a mixed carbon ion-photon irradiation regimen, a promising strategy in advanced particle therapy.
View Article and Find Full Text PDFBiol Cybern
September 2025
Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 61801, IL, USA.
In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peripheral nervous system (PNS), and the coupling of PNS with muscular contractions; (ii) modeling the arm sensory system, including chemosensing and proprioception; and (iii) algorithms for sensorimotor control, which include a novel feedback neural motor control law for mimicking target-oriented arm reaching motions, and a novel consensus algorithm for solving sensing problems such as locating a food source from local chemical sensory information (exogenous) and arm deformation information (endogenous).
View Article and Find Full Text PDF