98%
921
2 minutes
20
Objective: The current study investigated driver vigilance in partially automated vehicles to determine whether increased task demands reduce a driver's ability to monitor for automation failures and whether the vigilance decrement associated with hazard detections is due to driver overload.
Background: Drivers of partially automated vehicles are expected to monitor for signs of automation failure. Previous research has shown that a driver's ability to perform this duty declines over time. One possible explanation for this vigilance decrement is that the extreme demands of vigilance causes overload and leads to depletion of limited attentional resources required for vigilance.
Method: Participants completed a 40-min drive in a simulated partially automated vehicle and were tasked with monitoring for hazards that represented potential automation failures. Two factors were manipulated to test the impact of monitoring demands on performance: Spatial uncertainty and event rate.
Results: As predicted, hazard detection performance was poorer when monitoring demands were increased, and performance declined as a function of time on task. Subjective reports also indicated high workload and task-induced stress.
Conclusion: Drivers of partially automated vehicles are impaired by the vigilance decrement and elevated task demands, meaning that safe operation becomes less likely when the demands associated with monitoring automation increase and as a drive extends in duration. This study also supports the notion that vigilance performance in partially automated vehicles is likely due to driver overload.
Application: Developers of automation technologies should consider countermeasures that attenuate a driver's cognitive load when tasked with monitoring automation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0018720818802095 | DOI Listing |
Accid Anal Prev
September 2025
Department of Traffic Engineering and Key Laboratory of Road and Traffic Engineering Ministry of Education, Tongji University, Shanghai 201804, China. Electronic address:
In future traffic environments dominated by highly autonomous vehicles (AVs), pedestrians may face challenges in accurately interpreting AV behavior, thereby potentially increasing the risk of pedestrian-AV interactions. External human-machine interfaces (eHMIs) have been proposed to facilitate communication between AVs and pedestrians; however, comprehensive evaluations using objective data from real-world interactions are limited. This study developed a systematic evaluation framework grounded in the ISO 9241-11 standard, integrating four key indicators: decision accuracy, comprehensibility, decision efficiency, and perceived safety.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
With the rapid advancement in autonomous vehicles, 5G and future 6G communications, medical imaging, spacecraft, and stealth fighter jets, the frequency range of electromagnetic waves continues to expand, making electromagnetic interference (EMI) shielding a critical challenge for ensuring the safe operation of equipment. Although some existing EMI shielding materials offer lightweight construction, high strength, and effective shielding, they struggle to efficiently absorb broadband electromagnetic waves and mitigate dimensional instability and thermal stress caused by temperature fluctuations. These limitations significantly reduce their service life and restrict their practical applications.
View Article and Find Full Text PDFData Brief
October 2025
School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA.
Unmanned Aerial Vehicles (UAVs) have become a critical focus in robotics research, particularly in the development of autonomous navigation and target-tracking systems. This journal article provides an overview of a multi-year IEEE-hosted drone competition designed to advance UAV autonomy in complex environments. The competition consisted of two primary challenges.
View Article and Find Full Text PDFSci Adv
September 2025
Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
Turbulence-induced vibrations pose substantial risks to aircraft structural integrity and flight stability, particularly in unmanned aerial vehicles (UAVs), where real-time impact monitoring and lightweight protection are critical. Here, we present a bioinspired twist-hyperbolic metamaterial (THM) integrated with a triboelectric nanogenerator (TENG) for simultaneously impact buffering and self-powered sensing. The THM-TENG protector exhibits tunable stiffness (40 to 4300 newtons per millimeter), ~70% impact energy absorption, and achieves a specific energy absorption of ~0.
View Article and Find Full Text PDFStem Cell Res Ther
September 2025
State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China.
Background: Polycystic Ovary Syndrome (PCOS), is a complex endocrine disorder affecting 6-21% of reproductive-aged women, characterized by chronic anovulation, hyperandrogenism, and polycystic ovarian morphology. Current clinical management relies on lifestyle modifications and symptom-targeted therapies due to the absence of curative interventions. In recent years, Laparoscopic ovarian drilling (LOD), a surgical procedure that induces controlled ovarian damage to stimulate primordial follicle activation and regulate follicular growth, has emerged as an established therapeutic intervention for infertility in PCOS.
View Article and Find Full Text PDF