Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Our previous study suggested that NSC-CM (neural stem cell-conditioned medium) inhibited cell apoptosis . In addition, many studies have shown that neurotrophic factors and microparticles secreted into a conditioned medium by NSCs had neuroprotective effects. Thus, we hypothesized that NSC-CM had the capacity of protecting against cerebral I/R injury.

Methods: Adult male Sprague-Dawley rats receiving middle cerebral artery occlusion surgery as an animal model of cerebral I/R injury were randomly assigned to two groups: the control group and NSC-CM-treated group. 1.5 ml NSC-CM or PBS (phosphate buffer saline) was administrated slowly by tail vein at 3 h, 24 h, and 48 h after ischemia onset.

Results: NSC-CM significantly ameliorated neurological defects and reduced cerebral infarct volume, accompanied by preserved mitochondrial ultrastructure. In addition, we also found that NSC-CM significantly inhibited cell apoptosis in the ischemic hemisphere via improving the expression of Bcl-2 (B-cell lymphoma-2).

Conclusion: NSC-CM might be an alternative and effective therapeutic intervention for ischemic stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903322PMC
http://dx.doi.org/10.1155/2018/4659159DOI Listing

Publication Analysis

Top Keywords

neural stem
8
stem cell-conditioned
8
cell-conditioned medium
8
inhibited cell
8
cell apoptosis
8
cerebral i/r
8
nsc-cm
6
cerebral
5
medium ameliorated
4
ameliorated cerebral
4

Similar Publications

Background: Spinal cord injury (SCI) often leads to severe motor and sensory impairments, and current treatment methods have not achieved complete neural repair. In recent years, exosomes have become a research focus in the treatment of nerve injuries due to their important roles in intercellular information transfer, immune regulation, and neural repair. Our study conducts a scientometric analysis to map the research landscape related to exosomes in SCI.

View Article and Find Full Text PDF

Introduction: Parkinson's disease (PD) is a neurodegenerative disorder lacking therapies to replace lost dopaminergic neurons. Neural stem cell (NSC) transplantation faces survival and differentiation challenges. This study investigated feasibility and efficacy of paeoniflorin (PF) combined with NSC transplantation for PD treatment.

View Article and Find Full Text PDF

Facial nerve pathology: emerging strategies for regeneration and functional restoration.

J Mater Chem B

September 2025

Nebraska Translational Research Center (NTRC), Department of Growth and Development, College of Dentistry, University of Nebraska Medical Center, Joseph D. & Millie E. Williams Science Hall, 525 S 42nd St, Room No 3.0.010, Omaha, NE 68105-6040, USA.

Facial nerve injuries cause significant functional impairments, affect facial expressions, speech, and overall quality of life. This article explores advances in facial nerve regeneration, encompassing both conventional and emerging therapeutic strategies. The regenerative process involves Wallerian degeneration, axonal regrowth, and target muscle reinnervation, where the distal axon degrades and the proximal axon initiates sprouting to restore connectivity.

View Article and Find Full Text PDF

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF

E3 ubiquitin ligases regulate the cellular proteome proteasome-dependent protein degradation; however, there exist limited studies outlining their non-canonical functions. RNA-binding ubiquitin ligases (RBULs) represent a subset of E3 ligases that harbour RNA-binding domains, making them uniquely positioned to function as both RNA-binding proteins and E3 ligases. Our initial microarray screen for E3 ligases from mouse cortical neural progenitor cells identified MEX3B, a known RNA-binding ubiquitin ligase, to be differentially expressed.

View Article and Find Full Text PDF