Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Staphylococcus aureus requires branched-chain amino acids (BCAAs; isoleucine, leucine, valine) for protein synthesis, branched-chain fatty acid synthesis, and environmental adaptation by responding to their availability via the global transcriptional regulator CodY. The importance of BCAAs for S. aureus physiology necessitates that it either synthesize them or scavenge them from the environment. Indeed S. aureus uses specialized transporters to scavenge BCAAs, however, its ability to synthesize them has remained conflicted by reports that it is auxotrophic for leucine and valine despite carrying an intact BCAA biosynthetic operon. In revisiting these findings, we have observed that S. aureus can engage in leucine and valine synthesis, but the level of BCAA synthesis is dependent on the BCAA it is deprived of, leading us to hypothesize that each BCAA differentially regulates the biosynthetic operon. Here we show that two mechanisms of transcriptional repression regulate the level of endogenous BCAA biosynthesis in response to specific BCAA availability. We identify a trans-acting mechanism involving isoleucine-dependent repression by the global transcriptional regulator CodY and a cis-acting leucine-responsive attenuator, uncovering how S. aureus regulates endogenous biosynthesis in response to exogenous BCAA availability. Moreover, given that isoleucine can dominate CodY-dependent regulation of BCAA biosynthesis, and that CodY is a global regulator of metabolism and virulence in S. aureus, we extend the importance of isoleucine availability for CodY-dependent regulation of other metabolic and virulence genes. These data resolve the previous conflicting observations regarding BCAA biosynthesis, and reveal the environmental signals that not only induce BCAA biosynthesis, but that could also have broader consequences on S. aureus environmental adaptation and virulence via CodY.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794164PMC
http://dx.doi.org/10.1371/journal.pgen.1007159DOI Listing

Publication Analysis

Top Keywords

bcaa biosynthesis
16
leucine valine
12
bcaa
10
branched-chain amino
8
acid synthesis
8
aureus
8
staphylococcus aureus
8
environmental adaptation
8
global transcriptional
8
transcriptional regulator
8

Similar Publications

Methylmalonic acidemia (MMA) is a severe metabolic disorder affecting multiple organs because of a distal block in branched-chain amino acid (BCAA) catabolism. Standard of care is limited to protein restriction and supportive care during metabolic decompensation. Severe cases require liver/kidney transplantation, and there is a clear need for better therapy.

View Article and Find Full Text PDF

The characteristics of the tumor microenvironment (TME) of pancreatic cancer include an abundant stroma, hypoxia, insufficient blood supply and high degree of immunosuppression. Therefore, overcoming the TME conditions to reach a hypermetabolic state is a concern for the treatment of pancreatic cancer. Previous studies have demonstrated that tumor cells adapt to the TME by activating or increasing the expression level of ACSS2 under metabolic stress.

View Article and Find Full Text PDF

Minocycline Protects Against Oxidative Stress in a Model of Maple Syrup Urine Disease.

Neurochem Res

September 2025

Laboratório de Doenças Neurometabólicas, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil.

Branched-chain amino acids (BCAA) leucine, isoleucine, and valine are metabolized by complex branched-chain ketoacids dehydrogenase (BCKDH). In Maple Syrup Urine Disease (MSUD), the BCKDH complex has its activity blocked by a genetic mutation, compromising the BCAA metabolism and leading to the accumulation of these BCAA, related to neurological damage in this disease. Thus, minocycline is a broad-spectrum antibiotic, bacteriostatic, and studies have shown benefits in neurodegenerative disease progression, like reduction of oxidative stress, inflammation, and downregulation of molecular pathways, such as apoptosis.

View Article and Find Full Text PDF

Branched-chain amino acids induce hyperammonemia via gut-liver axis-mediated ammonia overproduction in laying hens.

Anim Nutr

September 2025

Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Key Laboratory for Animal Molecular Nutrition of Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.

Gut microbiota not only biosynthesizes branched-chain amino acids (BCAA) but also catabolizes and utilizes them, while the effects of dietary BCAA supplementation on intestinal microbiota and metabolism remain largely elusive. Therefore, the present study aimed to investigate the impacts of dietary BCAA supplementation on productive performance, egg quality, gut microbiota and metabolism in laying hens. A total of 180 Fengda No.

View Article and Find Full Text PDF

Irf4 participates in benzene-induced hematopoietic senescence through mitochondrial ROS-dependent BCAA catabolism.

Toxicology

August 2025

Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, PR China. Electronic address:

The continuous accumulation of senescent hematopoietic stem progenitors (HSPCs) contributes to hematopoietic damage. Benzene is a confirmed human carcinogen, and its damage to HSPCs is a key event in benzene poisoning. However, whether the environmental dose of benzene is involved in HSPC damage by inducing cellular senescence has not been reported.

View Article and Find Full Text PDF