98%
921
2 minutes
20
Maintaining a balance in gene dosage and protein activity is essential to sustain normal cellular functions. Males and females have a wide range of genetic as well as epigenetic differences, where X-linked gene dosage is an essential regulatory factor. Basic understanding of gene dosage maintenance has emerged from the studies carried out using mouse models with FCG (four core genotype) and chromosomal aneuploidy as well as from mono-chromosomal hybrid cells. In mammals, aneuploidy often leads to embryonic lethality particularly in early development with major developmental and structural abnormalities. Thus, in-depth analysis of the causes and consequences of gene dosage alterations is needed to unravel its effects on basic cellular and developmental functions as well as in understanding its medical implications. Cells isolated from individuals with naturally occurring chromosomal aneuploidy can be considered as true representatives, as these cells have stable chromosomal alterations/gene dosage imbalance, which have occurred by modulation of the basic molecular machinery. Therefore, innovative use of these natural aneuploidy cells/organisms with recent molecular and high-throughput techniques will provide an understanding of the basic mechanisms involved in gene dosage balance and the related consequences for functional genomics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bfgp/elx041 | DOI Listing |
Inflammopharmacology
September 2025
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Background: Pentoxifylline (PTX), a methylxanthine derivative, has been recognized as a potential anti-inflammatory treatment across various conditions, yet its effects on inflammatory markers remain inconsistent. This systematic review/meta-analysis evaluated the impact of PTX on serum levels and gene expression of key inflammatory markers in randomized controlled trials (RCTs).
Methods: A systematic search was conducted in PubMed, Scopus, Embase, Web of Science, and ProQuest up to May 2025.
Microb Biotechnol
September 2025
College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China.
The Brucella abortus A19 attenuated live vaccine poses potential infection risks during practical applications and interferes with serological diagnostics, thereby affecting quarantine measures and the establishment of disease-free zones. Consequently, this study aimed to reduce its potential virulence, enhance its protective efficacy and differentiate it from wild-type strains by knocking out the immunosuppressive virulence gene btpB in the A19 strain. Using homologous recombination, we successfully obtained the A19ΔBtpB deletion strain.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom.
The mammary gland, which primarily develops postnatally, undergoes significant changes during pregnancy and lactation to facilitate milk production. Through the generation and analysis of 480 transcriptomes, we provide the most detailed allelic expression map of the mammary gland, cataloguing cell-type-specific expression from ex-vivo purified cell populations over 10 developmental stages, enabling comparative analysis. The work identifies genes involved in the mammary gland cycle, parental-origin-specific and genetic background-specific expression at cellular and temporal resolution, genes associated with human lactation disorders and breast cancer.
View Article and Find Full Text PDFGene
September 2025
Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China. Electronic address:
Background: Nasopharyngeal carcinoma (NPC) pathogenesis is multi-factorial, involving synergistic interactions among genetic susceptibility, Epstein-Barr virus (EBV) infection, and environmental exposures. Notably, specific multi-generational families exhibit NPC incidence substantially exceeding both sporadic cases and general genetic susceptibility cohorts, demonstrating Mendelian inheritance patterns. This supports the hypothesis that high penetrance pathogenic variants dominate disease initiation and progression in familial NPC.
View Article and Find Full Text PDFPlant J
September 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Genome imbalance, resulting from varying the dosage of individual chromosomes (aneuploidy), has a more detrimental effect than changes in complete sets of chromosomes (haploidy/polyploidy). This imbalance is likely due to disruptions in stoichiometry and interactions among macromolecular assemblies. Previous research has shown that aneuploidy causes global modulation of protein-coding genes (PCGs), microRNAs, and transposable elements (TEs), affecting both the varied chromosome (cis-located) and unvaried genome regions (trans-located) across various taxa.
View Article and Find Full Text PDF