Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A plasmonic nanostructure (PNS) which integrates metallic and dielectric media within a single structure has been shown to exhibit specific plasmonic properties which are considered useful in refractive index (RI) sensor applications. In this paper, the simultaneous realization of sensitivity and tunability of the optical properties of PNSs consisting of alternative Ag and dielectric of nanosphere/nanorod array have been proposed and compared by using three-dimensional finite element method. The proposed system can support plasmonic hybrid modes and the localized surface plasmonic resonances and cavity plasmonic resonances within the individual PNS can be excited by the incident light. The proposed PNSs can be operated as RI sensor with a sensitivity of 500 nm/RIU (RIU = refractive index unit) ranging from UV to the near-infrared. In addition, a narrow bandwidth and nearly zero transmittance along with a high absorptance can be achieved by a denser PNSs configuration in the unit cell of PNS arrays. We have demonstrated the number of modes sustained in the PNS system, as well as, the near-field distribution can be tailored by the dielectric media in PNSs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711893PMC
http://dx.doi.org/10.1038/s41598-017-17024-7DOI Listing

Publication Analysis

Top Keywords

simultaneous realization
8
sensitivity tunability
8
dielectric media
8
plasmonic resonances
8
plasmonic
6
realization high
4
high sensing
4
sensing sensitivity
4
tunability plasmonic
4
plasmonic nanostructures
4

Similar Publications

Background-Free Rolling Circle Amplification for SERS Bioassay Using a Chimeric Hairpin-Integrated CRISPR/Cas12a System.

Anal Chem

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361

Rolling circle amplification (RCA) has revolutionized nucleic acid detection owing to its isothermal simplicity. However, over two decades of clinical application have been hampered by off-target amplification and incompatibility with double-stranded DNA (dsDNA). Herein, a strategy, specifically cleavage of rationally designed DNA/RNA chimeric hairpin preprimer by dsDNA-targeted CRISPR/Cas12a to rlease ssRNA for initiating RCA (SCOPE-RCA), is proposed for nucleic acid identification of African swine fever virus (ASFV).

View Article and Find Full Text PDF

The 180° switching of the perpendicular Néel vector induced by the spin-orbit torque (SOT) presents significant potential for ultradense and ultrafast antiferromagnetic SOT-magnetoresistive random-access memory. However, its experimental realization remains a topic of intense debate. Here, unequivocal evidence is provided for the SOT-induced 180° switching of the perpendicular Néel vector in collinear antiferromagnetic CrO in a Pt/CrO/Co trilayer structure.

View Article and Find Full Text PDF

Unlocking Hydrogen Spillover: Dynamic Behavior and Advanced Applications.

Acc Chem Res

September 2025

Division of Materials and Manufacturing Science, Graduate School of Engineering, The University of Osaka, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

ConspectusHydrogen spillover, the simultaneous diffusion of protons and electrons, has recently emerged as a key phenomenon in the functionalization of hydrogen in cutting-edge research fields. Its occurrence has been found to significantly impact hydrogen-related fields of science, such as catalysis, reduction, and hydrogen storage. Since the discovery of hydrogen spillover more than half a century ago, although many scientists have reported its unique properties and have attempted to utilize them, no practical advanced applications have been established yet.

View Article and Find Full Text PDF

Flexible, Transparent, and Microfluidic-Compatible Wafer-Scale Metamaterial Sheets for Dual SEF and SERS Sensing.

ACS Appl Mater Interfaces

September 2025

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.

Integrating surface-enhanced fluorescence (SEF) and surface-enhanced Raman spectroscopy (SERS) into a single probe is a natural step forward for plasmon-enhanced spectroscopy (PES), as SEF enables enhanced fluorescent imaging for fast screening of targets, while SERS allows ultrasensitive trace molecular characterization with specificity. However, many challenges remain, e.g.

View Article and Find Full Text PDF

Water eutrophication has emerged as a pervasive ecological challenge worldwide. To realize the resource utilization of waste and nutrients, a novel rape straw-derived biochar-calcium alginate composite (M-CA-RBC) immobilized Pseudomonas sp. H6 was synthesized to simultaneously remove phosphate (PO) and ammonium (NH) from distillery wastewater.

View Article and Find Full Text PDF