Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A series of zirconium polyphenolate-decorated-(metallo)porphyrin metal-organic frameworks (MOFs), ZrPP-n (n = 1, 2), featuring infinite Zr -oxo chains linked via polyphenolate groups on four peripheries of eclipse-arranged porphyrin macrocycles, are successfully constructed through a top-down process from simulation to synthesis. These are the unusual examples of Zr-MOFs (or MOFs in general) based on phenolic porphyrins, instead of commonly known carboxylate-based types. Representative ZrPP-1 not only exhibits strong acid resistance (pH = 1, HCl) but also remains intact even when immersed in saturated NaOH solution (≈20 m), an exceptionally large range of pH resistance among MOFs. The metallation at the porphyrin core gives rise to materials with enhanced sorption and catalytic properties. In particular, ZrPP-1-Co, with precise and uniform distribution of active centers, exhibits not only high CO trapping capability (≈90 cm g at 1 atm, 273 K, among the highest in Zr-MOFs) but also high photocatalytic activity for reduction of CO into CO (≈14 mmol g h ) and high selectivity over CH (>96.4%) without any cocatalyst under visible-light irradiation (λ > 420 nm). Given the strong chemical resistance under extreme alkali conditions, these catalysts can be recycled without appreciable loss of activity. The possible mechanism for photocatalytic reduction of CO -to-CO over ZrPP-1-Co is also proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201704388DOI Listing

Publication Analysis

Top Keywords

acid base
4
base resistant
4
resistant zirconium
4
zirconium polyphenolate-metalloporphyrin
4
polyphenolate-metalloporphyrin scaffolds
4
scaffolds efficient
4
efficient photoreduction
4
photoreduction series
4
series zirconium
4
zirconium polyphenolate-decorated-metalloporphyrin
4

Similar Publications

Enhanced rotator cuff tendon-bone interface regeneration with injectable manganese-based mesoporous silica nanoparticle-loaded dual crosslinked hydrogels.

Front Bioeng Biotechnol

August 2025

Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China.

Introduction: During the healing process, the functional gradient attachment of the rotator cuff (RC) tendon-bone interface fails to regenerate, which severely impedes load transfer and stress dissipation, thereby increasing the risk of retears. As a result, the treatment of rotator cuff tears remains a significant clinical challenge.

Methods: In this study, a dual-crosslinked hyaluronic acid/polyethylene glycol (HA/PEG) hydrogel scaffold was synthesized using hyaluronic acid and polyethylene glycol as base materials.

View Article and Find Full Text PDF

Introduction: Galectin-9 is a β-galactoside-binding lectin that functions as a critical pattern recognition receptor (PRR) in the host immune system, initiating immune defense responses by recognizing and binding to pathogen-associated molecular patterns (PAMPs) on the surface of microorganisms. In this study, we identified and characterized a novel galectin-9 cDNA, designated CcGal-9, from Yellow River carp ().

Methods: The full-length CcGal-9 cDNA was cloned and sequenced, and its structural features were analyzed.

View Article and Find Full Text PDF

We combined circular dichroism (CD) and viscosity measurements with molecular dynamics (MD) simulations and classification and regression approaches to machine learning to characterize solution structures of 22-mer, 25-mer, and 30-mer peptide- (-GlyArg6) conjugated phosphorodiamidate morpholino oligonucleotides (PPMOs). PPMO molecules form non-canonical folded structures with 1.4- to 1.

View Article and Find Full Text PDF

A series of precise and controllable base editors with split-TadA-8e.

Mol Ther Nucleic Acids

September 2025

State Key Laboratory of Common Mechanisms Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.

Adenine base editors (ABEs) enable efficient A-to-G base conversions in genomic DNA, serving as powerful tools for basic research and clinical disease treatment. TadA-8e with high processive and compatibility makes ABE8e to be the most widely used adenine base editor and has also facilitated the creation of more elegant base editors based on TadA-8e fusion, such as AYBE and eA&C-BEmax. However, ABE8e has more off-target events including DNA off-target and RNA off-target, which raises safety concerns for precision gene editing.

View Article and Find Full Text PDF

Electrolyte-Driven Cu Substitution in MoSe: Synergy of an Inorganic-Rich Solid Electrolyte Interphase and Thermal Activation for Sodium-Ion Batteries.

ACS Nano

September 2025

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.

Transition metal chalcogenides (TMCs) have garnered significant attention as high-capacity anode materials, yet the unconventional role of the Cu collector meditating atomic-level substitution of metal-site cations by Cu ions during electrochemical cycling remains mechanistically unclear. To address this, herein, Cu-doped MoSe@C ultrathin nanosheets were synthesized via the solvothermal process and carbonization strategies. A systematic investigation was conducted to elucidate the underlying driving forces for Cu substitution at Mo sites and the crucial regulatory effects of solid electrolyte interphase (SEI) formation.

View Article and Find Full Text PDF