98%
921
2 minutes
20
Anthropogenic nitrogen (N) emissions to the atmosphere have increased significantly the deposition of nitrate (NO) and ammonium (NH) to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work, ~2900 observations of aerosol NO and NH concentrations, acquired from sampling aboard ships in the period 1995 - 2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NO) on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes, however these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), which only report deposition flux are therefore very difficult to validate for dry deposition. Here the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep) of oxidised N (NO) and reduced N (NH) and to the following parameters from the TM4-ECPL (TM4) model: ModDep for NO, NH and particulate NO and NH, and surface-level particulate NO and NH concentrations. As a model ensemble, ACCMIP can be expected to be more robust than TM4, while TM4 gives access to speciated parameters (NO and NH) that are more relevant to the observed parameters and which are not available in ACCMIP. Dry deposition fluxes (CalDep) were calculated from the observed concentrations using estimates of dry deposition velocities. Model - observation ratios, weighted by grid-cell area and numbers of observations, (R) were used to assess the performance of the models. Comparison in the three study regions suggests that TM4 over-estimates NO concentrations (R = 1.4 - 2.9) and under-estimates NH concentrations (R = 0.5 - 0.7), with spatial distributions in the tropical Atlantic and northern Indian Ocean not being reproduced by the model. In the case of NH in the Indian Ocean, this discrepancy was probably due to seasonal biases in the sampling. Similar patterns were observed in the various comparisons of CalDep to ModDep (R = 0.6 - 2.6 for NO, 0.6 - 3.1 for NH). Values of R for NH CalDep - ModDep comparisons were approximately double the corresponding values for NH CalDep - ModDep comparisons due to the significant fraction of gas-phase NH deposition incorporated in the TM4 and ACCMIP NH model products. All of the comparisons suffered due to the scarcity of observational data and the large uncertainty in dry deposition velocities used to derive deposition fluxes from concentrations. These uncertainties have been a major limitation on estimates of the flux of material to the oceans for several decades. Recommendations are made for improvements in N deposition estimation through changes in observations, modelling and model - observation comparison procedures. Validation of modelled dry deposition requires effective comparisons to observable aerosol-phase species concentrations and this cannot be achieved if model products only report dry deposition flux over the ocean.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685536 | PMC |
http://dx.doi.org/10.5194/acp-17-8189-2017 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.
The development of ultrablack coatings with exceptional absorption (>98%) has historically faced significant scientific and engineering challenges, primarily due to limitations in material selection, structural design, and practical durability. Considering the difficulties in practical applications of ultrablack materials with micro/nano structures and the limitations of planar ultrablack coatings in optical performance, we introduce an innovative integration of conventional planar ultrablack coatings with a specifically engineered trilayer antireflection architecture. This hybrid system incorporates a refractive index distribution (1.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China.
Flexible strain sensors are pivotal for the advancement of robotics, wearable healthcare, and human-machine interaction in the post-Moore era. However, conventional materials struggle to simultaneously achieve high sensitivity, a broad strain range, and low power consumption for cutting-edge applications. In this work, the issue is addressed through single crystal 1D tellurium nanoribbons (NRs), which are synthesized on SiO/Si substrate by hydrogen-assisted chemical vapor deposition (CVD) method.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Sustainable Energy and Environmental Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511458, China.
Ammonia (NH) has attracted increasing attention for its reduction potential in fine particulate matter mitigation, yet current NH emission inventories involve substantial uncertainties. Previous bottom-up NH inventories are usually constrained by satellite observations, deposition measurements, or isotopic analysis and still lack careful validation at fine regional scales. This study develops a novel diagnostic framework combining multisite NH observations across the Pearl River Delta (PRD) with the Community Multiscale Air Quality (CMAQ) model simulations and machine learning techniques to evaluate and refine a regional NH inventory.
View Article and Find Full Text PDFSci Total Environ
September 2025
The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot, Israel. Electronic address:
Tropospheric ozone (O) is a major air pollutant that negatively affects human health and vegetation, and plays a central role in climate change and atmospheric chemistry. Current simulations of tropospheric O concentrations in climate and air-quality models are significantly limited by the inaccurate representation of O dry deposition rate-particularly in urban areas, where field measurements remain scarce. We hypothesize that O dry deposition in the urban environment is controlled by factors similar to those over vegetation, albeit via potentially different mechanisms.
View Article and Find Full Text PDFJ Environ Manage
August 2025
Departamento de Eficiencia Energética y Biotecnología Ambiental, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Av. E. Bustillo 9500, CP 8400, S.C. de Bariloche, Río Negro, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. El
Metal contamination is a growing concern due to its toxicity, persistence, and accumulation in ecosystems. This problem requires efficient remediation strategies. Unicellular algae are effective at removing metals from solution.
View Article and Find Full Text PDF