Functional modification of breathable polyacrylonitrile/polyurethane/TiO nanofibrous membranes with robust ultraviolet resistant and waterproof performance.

J Colloid Interface Sci

Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China. Electronic address:

Published: December 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exploiting high-added-value textiles equipped with multiple functionalities like ultraviolet (UV) resistance, waterproofness, and thermal-moisture comfort is facing tremendous demand by a more discerning consumer market. However, the major challenge is to realize the equilibrium among the multifunction. Herein, a new attempt of fabricating superhydrophobic electrospun polyacrylonitrile (PAN)/polyurethane (PU)/titanium dioxide (TiO) nanofibrous membranes has been tried, and the membranes exhibited multifunction of UV resistance, waterproofness and breathability by coating modification with 2-hydroxy-4-n-octoxybenzophenone (UV531) and fluorinated acrylic copolymer (FAC). TiO NPs as inorganic blocker and UV531 as organic absorber were utilized to impart the excellent double UV resistant function for the modified nanofibrous membranes. The hydrophobic coating with FAC endowed the pristine membranes with enhanced superhydrophobic wettability and the advancing contact angle was 152.1°. Regulating the addition amount of TiO NPs, the UV531 and FAC concentration, the multiple functionalities of the modified PAN/PU/TiO were systemically optimized: robust tensile strength (14.6MPa), good ultraviolet protection factor of 1485, modest waterproofness (62kPa), and moisture breathability (12.9kgm d). The equilibrium among the multifunction of the as-prepared membranes indicated their diverse possibilities can be used in various applications, including high-altitude garments, protective clothing, covering materials, self-cleaning materials, and other medical products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2017.08.055DOI Listing

Publication Analysis

Top Keywords

nanofibrous membranes
12
multiple functionalities
8
resistance waterproofness
8
equilibrium multifunction
8
tio nps
8
membranes
6
functional modification
4
modification breathable
4
breathable polyacrylonitrile/polyurethane/tio
4
polyacrylonitrile/polyurethane/tio nanofibrous
4

Similar Publications

Multifunctional Photoactive Janus Nanofibrous Membranes for Unidirectional Water Transport and Remediation of Airborne Pathogens and Pollutants.

ACS Nano

September 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.

Airborne pathogens and pollution control typically necessitate multiple membranes, each specializing in efficient aerosol filtration, moisture regulation, or antimicrobial protection. Integrating all these functions into a single membrane is highly advantageous but remains inherently challenging due to material incompatibility and inevitable performance trade-offs. Here, we present a photoactive Janus nanofibrous membrane for highly efficient air purification, engineered via sequential electrospinning.

View Article and Find Full Text PDF

Acidochromic fluorescent membranes have garnered significant research interest owing to their potential in real-time environmental monitoring and smart sensing applications. However, the rational design of membranes to optimize their structure-property interplay for enhanced acidochromic performance remains further explored. Herein, we prepared various stimulus-responsive micro/nanofibrous membranes using electrospinning technology by incorporating a fluorescent small molecule (TPECNPy-2) with thermoplastic polyurethane (TPU) to obtain specific properties.

View Article and Find Full Text PDF

Neutrophil-Inspired Film for Nonadhesive Capture of Tumor Cells through Synergistic Functionalization of Zwitterions and Aptamers.

Chem Bio Eng

August 2025

Department of Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China.

The development of biomaterials capable of capturing nondestructively capturing tumor cells is critical for advancing cancer diagnostics and personalized therapies. However, designing specific capture materials for maintaining the structure of captured cells is still a challenge due to the undesirable nonspecific adhesion. Recent evidence showed that neutrophils possess the tumor cell targeting property via the binding of β-integrin on neutrophil membranes to VCAM-1 expressed on tumor cells and natural antiadhesion properties due to the phosphorylcholine on the cell membrane.

View Article and Find Full Text PDF

Cellulose acetate-based dual-layer nanofibrous composite membranes for desalination by membrane distillation.

Int J Biol Macromol

August 2025

Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt. Electronic address:

Desalination has emerged as a key solution to the growing global demand for clean water. Membrane distillation (MD) has gained increasing attention due to its ability to treat hypersaline and complex wastewater using low-grade thermal energy. However, MD membranes continue to face performance challenges, particularly low permeate flux and limited resistance to pore wetting.

View Article and Find Full Text PDF

As demands increase for multifunctional textiles and breathable coatings in high-humidity and high-mobility environments, the development of membranes that combine waterproofing, breathability, and mechanical durability has become a critical challenge. This study presents a novel, organic solvent-free electrospinning approach to fabricate waterborne polyurethane (WPU)-based nanofiber membranes, enhanced by polyacrylamide (PAM) as a dual-functional additive. By leveraging hydrogen bonding interactions between the -COO, -NHCOO- groups in WPU and the -CONH groups in PAM, the resulting composite achieved stable electrospinning, improved fiber morphology, and a significantly higher water contact angle (86.

View Article and Find Full Text PDF