Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vertically stacked van der Waals (vdW) heterostructures have been suggested as a robust platform for studying interfacial phenomena and related electric/optoelectronic devices. While the interlayer Coulomb interaction mediated by the vdW coupling has been extensively studied for carrier recombination processes in a diode transport, its correlation with the interlayer tunneling transport has not been elucidated. Here, a contrast is reported between tunneling and drift photocurrents tailored by the interlayer coupling strength in MoSe /MoS hetero-bilayers (HBs). The interfacial coupling modulated by thermal annealing is identified by the interlayer phonon coupling in Raman spectra and the emerging interlayer exciton peak in photoluminescence spectra. In strongly coupled HBs, positive photocurrents are observed owing to the inelastic band-to-band tunneling assisted by interlayer excitons that prevail over exciton recombinations. By contrast, weakly coupled HBs exhibit a negative photovoltaic diode behavior, manifested as a drift current without interlayer excitonic emissions. This study sheds light on tailoring the tunneling transport for numerous optoelectronic HB devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201701512DOI Listing

Publication Analysis

Top Keywords

interlayer
8
assisted interlayer
8
interlayer excitons
8
van der
8
der waals
8
tunneling transport
8
coupled hbs
8
tunneling
5
tunneling photocurrent
4
photocurrent assisted
4

Similar Publications

Mimicking human brain functionalities with neuromorphic devices represents a pivotal breakthrough in developing bioinspired electronic systems. The human somatosensory system provides critical environmental information and facilitates responses to harmful stimuli, endowing us with good adaptive capabilities. However, current sensing technologies often struggle with insufficient sensitivity, dynamic response, and integration challenges.

View Article and Find Full Text PDF

The processes of thermoforming 2D-printed electronics into 3D structures can introduce defects that impact the electrical performance of conductors, making them more susceptible to thermal failure during high electrical power/current applications on temperature-sensitive substrates. We therefore report the use of a thin-film boron nitride nanotube (BNNT) interlayer to directly reduce heat stress on linear and serpentine metallic traces on polycarbonate substrates thermoformed to 3D spherocylindrical geometries at varying elongation percentages. We demonstrate that the BNNT interlayer helps to improve the electrical conductivity of highly elongated thermoformed 3D traces in comparison to traces on bare polycarbonate.

View Article and Find Full Text PDF

Preparation, Characterization, and Self-Assembly of P3HT-Based Janus Fibers via a Crystallization-Driven Self-Assembly Process.

ACS Macro Lett

September 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Poly(3-hexylthiophene) (P3HT)-based complex topological copolymers have attracted a great deal of attention for their unique electrical and optical properties. In this contribution, the P3HT-based Janus fibers with controlled lengths were innovatively prepared by sequential crystallization-driven self-assembly (CDSA) of poly(--butylstyrene)--polyisoprene--poly(3-hexylthiophene) (PBS--PI--P3HT) triblock copolymer, cross-linking of the interlayer PI region, and dissociation of fibers in good solvent. The comprehensive characterizations showed that the PBS/P3HT Janus fibers have nearly half the width of PBS--PI--P3HT fibers and fiber lengths close to or slightly shorter than those of PBS--PI--P3HT fibers, indicating that the Janus fibers with adjustable lengths could be prepared in a large window range.

View Article and Find Full Text PDF

Potassium optimization of sodium hydrogen vanadate thin nanosheets with superior performance for aqueous zinc-ion batteries.

Chem Commun (Camb)

September 2025

Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.

In this work, a series of potassium ion (K) pre-intercalated sodium hydrogen vanadates (K-HNVO) are prepared through a facile route. The introduction of K modulates the microstructure of the pristine sodium metavanadate and increases the interlayer spacing, thereby resulting in improved charge transport kinetics. Moreover, the pillaring effect of K enhances the structural stability of the pristine material.

View Article and Find Full Text PDF

Achieving quantitative control over interlayer spacing in multilayer two-dimensional (2D) supramolecular organic frameworks (SOFs) remains a fundamental challenge. Here, we report a molecular pillar engineering strategy enabling programmable vertical expansion of bilayer architectures. By designing elongated bipyridine pillars L2/L3 (3.

View Article and Find Full Text PDF