98%
921
2 minutes
20
Vertically stacked van der Waals (vdW) heterostructures have been suggested as a robust platform for studying interfacial phenomena and related electric/optoelectronic devices. While the interlayer Coulomb interaction mediated by the vdW coupling has been extensively studied for carrier recombination processes in a diode transport, its correlation with the interlayer tunneling transport has not been elucidated. Here, a contrast is reported between tunneling and drift photocurrents tailored by the interlayer coupling strength in MoSe /MoS hetero-bilayers (HBs). The interfacial coupling modulated by thermal annealing is identified by the interlayer phonon coupling in Raman spectra and the emerging interlayer exciton peak in photoluminescence spectra. In strongly coupled HBs, positive photocurrents are observed owing to the inelastic band-to-band tunneling assisted by interlayer excitons that prevail over exciton recombinations. By contrast, weakly coupled HBs exhibit a negative photovoltaic diode behavior, manifested as a drift current without interlayer excitonic emissions. This study sheds light on tailoring the tunneling transport for numerous optoelectronic HB devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201701512 | DOI Listing |
ACS Nano
September 2025
International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China.
Mimicking human brain functionalities with neuromorphic devices represents a pivotal breakthrough in developing bioinspired electronic systems. The human somatosensory system provides critical environmental information and facilitates responses to harmful stimuli, endowing us with good adaptive capabilities. However, current sensing technologies often struggle with insufficient sensitivity, dynamic response, and integration challenges.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
The processes of thermoforming 2D-printed electronics into 3D structures can introduce defects that impact the electrical performance of conductors, making them more susceptible to thermal failure during high electrical power/current applications on temperature-sensitive substrates. We therefore report the use of a thin-film boron nitride nanotube (BNNT) interlayer to directly reduce heat stress on linear and serpentine metallic traces on polycarbonate substrates thermoformed to 3D spherocylindrical geometries at varying elongation percentages. We demonstrate that the BNNT interlayer helps to improve the electrical conductivity of highly elongated thermoformed 3D traces in comparison to traces on bare polycarbonate.
View Article and Find Full Text PDFACS Macro Lett
September 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
Poly(3-hexylthiophene) (P3HT)-based complex topological copolymers have attracted a great deal of attention for their unique electrical and optical properties. In this contribution, the P3HT-based Janus fibers with controlled lengths were innovatively prepared by sequential crystallization-driven self-assembly (CDSA) of poly(--butylstyrene)--polyisoprene--poly(3-hexylthiophene) (PBS--PI--P3HT) triblock copolymer, cross-linking of the interlayer PI region, and dissociation of fibers in good solvent. The comprehensive characterizations showed that the PBS/P3HT Janus fibers have nearly half the width of PBS--PI--P3HT fibers and fiber lengths close to or slightly shorter than those of PBS--PI--P3HT fibers, indicating that the Janus fibers with adjustable lengths could be prepared in a large window range.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
In this work, a series of potassium ion (K) pre-intercalated sodium hydrogen vanadates (K-HNVO) are prepared through a facile route. The introduction of K modulates the microstructure of the pristine sodium metavanadate and increases the interlayer spacing, thereby resulting in improved charge transport kinetics. Moreover, the pillaring effect of K enhances the structural stability of the pristine material.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Chemistry, Zhengzhou University, 100 Kexue Street, Zhengzhou, 450001, China.
Achieving quantitative control over interlayer spacing in multilayer two-dimensional (2D) supramolecular organic frameworks (SOFs) remains a fundamental challenge. Here, we report a molecular pillar engineering strategy enabling programmable vertical expansion of bilayer architectures. By designing elongated bipyridine pillars L2/L3 (3.
View Article and Find Full Text PDF