98%
921
2 minutes
20
Optogenetics is an innovative technology now widely adopted by researchers in different fields of biological sciences. However, most light-sensitive proteins adopted in optogenetics are excited by ultraviolet or visible light which has a weak tissue penetration capability. Upconversion nanoparticles (UCNPs), which absorb near-infrared (NIR) light to emit shorter wavelength light, can help address this issue. In this report, we demonstrated the target selectivity by specifically conjugating the UCNPs with channelrhodopsin-2 (ChR2). We tagged the V5 epitope to the extracellular N-terminal of ChR2 (V5-ChR2m) and functionalized the surface of UCNPs with NeutrAvidin (NAv-UCNPs). After the binding of the biotinylated antibody against V5 onto the V5-ChR2m expressed in the plasma membrane of live HEK293T cells, our results showed that the NAv-UCNPs were specifically bound to the membrane of cells expressing V5-ChR2m. Without the V5 epitope or NAv modification, no binding of UCNPs onto the cell membrane was observed. For the cells expressing V5-ChR2m and bound with NAv-UCNPs, both 488 nm illumination and the upconverted blue emission from UCNPs by 980 nm excitation induced an inward current and elevated the intracellular Ca concentration. Our design reduces the distance between UCNPs and light-sensitive proteins to the molecular level, which not only minimizes the NIR energy required but also provides a way to guide the specific binding for optogenetics applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr03246c | DOI Listing |
J Colloid Interface Sci
September 2025
Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu 610041, China. Electronic address: Zhaoy
Lanthanide-doped fluoride nanoparticles show great potential for optical thermometry and bioimaging. However, their applications are still constrained by inherent limitations in luminescence intensity and functional versatility. To overcome these challenges, we propose a core-active shell-inert shell nanostructure that integrates multifunctional capabilities within a single platform.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector- 81, Punjab, 140306, India. Electronic address:
Background: Iron (Fe) is an essential micronutrient for plant growth, but the conventional DTPA soil analysis method for detecting available iron has notable limitations, requiring advanced instruments and lengthy preparation time. Developing a more affordable, user-friendly, and efficient method for iron detection in soil could greatly improve crop nutrition management. Here, a facile nanoscopic method was developed to quantify available Fe ions in the soil by forming a luminescence quenching complex in chelation with bathophenanthroline disulphonic acid disodium salt (Fe/BPDS complex).
View Article and Find Full Text PDFAnal Chem
September 2025
Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
Despite the various advantages of upconversion nanoparticles (UCNPs), the paradoxes of high luminescence resonance energy transfer (LRET) efficiency and low quantum yield remain a bottleneck for broader sensing applications. Herein, novel sandwich-structured UCNPs (SWUCNPs, NaYbF:(30%Gd)@NaYbF:Er(2%)@NaYF) with a core-middle shell-outer shell structure were synthesized. The SWUCNPs maintained a high LRET efficiency by confining the luminescent center of Er in the middle shell.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
Developing a sensitive analysis of dufulin with high anti-interference performance remains challenging. Herein, a metal-organic framework (MOF)-encapsulated upconversion nanoparticle (UC) core-shell hybrid sensor (UC@CuMOF) was designed for the sensitive detection of dufulin. With the encapsulation of the CuMOF shell, the luminescence of UC under a 980 nm laser was strongly quenched by the shell through the photoinduced electron transfer effect.
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010020, China.
MicroRNAs (miRNAs) play a critical role in early cancer detection, but traditional DNA probes are limited by the low abundance of miRNAs and their "always effective" property. Herein, we construct a photocaged amplified DNA nanodevice (PAD) by attaching DNA probes to upconversion nanoparticles (UCs). Upon remote near-infrared (NIR) light stimulation, the photocleavable DNA probes are activated by emitted UV light, and subsequently triggered by target miRNA.
View Article and Find Full Text PDF