98%
921
2 minutes
20
Aims: Macrophage migration inhibitory factor (MIF) is an important proinflammatory mediator linked to arterial diseases. Although its inflammatory property such as macrophage recruitment is known for contributing to vascular pathogenesis, the direct effects of MIF on homeostasis and biological function of vascular smooth muscle cell (VSMC) that are crucial for development of arterial abnormalities, are poorly understood.
Methods And Results: We show that MIF is able to directly induce VSMC dedifferentiation, a pathophysiological process fundamental for progression of various arterial diseases. Mechanistically, MIF suppresses p68 protein, a crucial regulator of cell growth and organ differentiation, via activation of JNK and p38 MAPKs. siRNA targeting of p68 facilitated dedifferentiation state in VSMCs, whereas p68 overexpression blocked MIF-elicited transition. In addition, MIF decreased the expression of serum response factor (SRF) that governs VSMC differentiation marker genes transcription, through repression of p68 protein. Furthermore, we showed a previously uncharacterized molecular interaction between p68 and SRF by co-immunoprecipitation assay. p68 attenuated MIF-elicited suppression of SRF recruitment to VSMC-specific promoter. Finally, anti-MIF treatment could reverse VSMC dedifferentiation, preserve vascular function, and inhibit remodelling due to vascular injury.
Conclusions: Our results demonstrate a novel mechanism for the regulation of VSMC differentiation by MIF involving p68 and SRF. Strategy for targeting of MIF could inhibit aberrant transition of VSMC in cardiovascular pathogenesis, and may be of therapeutic benefit in phenotype-related arterial remodelling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cvr/cvx025 | DOI Listing |
Funct Integr Genomics
September 2025
Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.
View Article and Find Full Text PDFRegen Biomater
August 2025
College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, Qingdao 266071, China.
Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.
View Article and Find Full Text PDFCancer Lett
September 2025
State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, Department of Radiology, Department of Clinical Research and Translational Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou,
The tumor microenvironment (TME) plays a pivotal role in cancer progression, though the molecular regulators governing its immunosuppressive properties remain incompletely characterized. In this study, we identify Makorin-2 (MKRN2) as a novel modulator of TME remodeling through integrated analyses of genetically engineered mouse models and human clinical data. Utilizing MKRN2 knockout mice, we observed significantly accelerated tumor growth compared to wild-type control, which was associated with profound alterations in immune cell composition, especially M2 macrophages.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Medical Center of Burn Plastic and Wound Repair, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China. Electronic address:
Skin scar formation is a critical pathological process in wound healing, but its underlying regulatory mechanisms remain incompletely elucidated. By integrating analyses of Bulk-RNA seq and single-cell RNA sequencing (scRNA-seq) data, we identified that ferroptosis-related biological processes potentially play a key role in skin scar formation. Further mechanistic studies demonstrated that in human dermal fibroblast cells, the ferroptosis regulator TIMP metallopeptidase inhibitor 1 (TIMP1) significantly promotes fibroblast differentiation toward a mature phenotype through interactions with cystatin C (CST3), characterized by upregulated expression of myofibroblast differentiation markers such as α-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF), along with enhanced cell proliferation and migration abilities.
View Article and Find Full Text PDFPLoS One
September 2025
Biobank of Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.
View Article and Find Full Text PDF