Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SAMHD1 is a dNTP hydrolase, whose activity is required for maintaining low dNTP concentrations in non-cycling T cells, dendritic cells, and macrophages. SAMHD1-dependent dNTP depletion is thought to impair retroviral replication in these cells, but the relationship between the dNTPase activity and retroviral restriction is not fully understood. In this study, we investigate allosteric activation of SAMHD1 by deoxynucleotide-dependent tetramerization and measure how the lifetime of the enzymatically active tetramer is affected by different dNTP ligands bound in the allosteric site. The EC values for SAMHD1 activation by dNTPs are in the 2-20 μm range, and the half-life of the assembled tetramer after deoxynucleotide depletion varies from minutes to hours depending on what dNTP is bound in the A2 allosteric site. Comparison of the wild-type SAMHD1 and the T592D mutant reveals that the phosphomimetic mutation affects the rates of tetramer dissociation, but has no effect on the equilibrium of allosteric activation by deoxynucleotides. Collectively, our data suggest that deoxynucleotide-dependent tetramerization contributes to regulation of deoxynucleotide levels in cycling cells, whereas in non-cycling cells restrictive to retroviral replication, SAMHD1 activation is likely to be achieved through a distinct mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5076810PMC
http://dx.doi.org/10.1074/jbc.C116.751446DOI Listing

Publication Analysis

Top Keywords

allosteric activation
12
dntp concentrations
12
activation samhd1
8
cycling cells
8
non-cycling cells
8
retroviral replication
8
deoxynucleotide-dependent tetramerization
8
bound allosteric
8
allosteric site
8
samhd1 activation
8

Similar Publications

The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor.

View Article and Find Full Text PDF

Babesia bigemina, a tick-borne protozoan parasite, is one of the main causative agents of bovine babesiosis, a disease with significant economic impact on the cattle industry. One of the key enzymes involved in the parasite's metabolism is lactate dehydrogenase (LDH), which plays an essential role in the anaerobic glycolytic pathway by catalysing the conversion of pyruvate to lactate. In this study, B.

View Article and Find Full Text PDF

Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.

View Article and Find Full Text PDF

Integrative profiling of lung cancer biomarkers EGFR, ALK, KRAS, and PD-1 with emphasis on nanomaterials-assisted immunomodulation and targeted therapy.

Front Immunol

September 2025

Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.

View Article and Find Full Text PDF

Mammalian ALOX15 are allosteric enzymes but the mechanism of allosteric regulation remains a matter of discussion. Octyl (-(5-(1-indol-2-yl)-2-methoxyphenyl)sulfamoyl)carbamate inhibits the linoleate oxygenase activity of ALOX15 at nanomolar concentrations, but oxygenation of arachidonic acid is hardly affected. The mechanism of substrate selective inhibition suggests inter-monomer communication within the allosteric ALOX15 dimer complex, in which the inhibitor binding to monomer A induces conformational alterations in the structure of the active site of monomer B.

View Article and Find Full Text PDF