Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

White spot syndrome virus (WSSV) is a lethal pathogen of shrimp and many other crustaceans, including crayfish. However, the molecular mechanism underlying its cellular entry remains elusive due to the lack of shrimp cell lines for viral propagation. Crayfish hematopoietic tissue (Hpt) cell culture was recently established as a good model for WSSV infection study. Here, we showed that multiple endocytic routes, including clathrin-mediated endocytosis (CME), macropinocytosis and caveolae-mediated endocytosis, were indispensably employed for the viral entry into Hpt cell of the crayfish Cherax quadricarinatus. Intriguingly, cellular autophagic activity was positively correlated with efficient viral entry, in which a key autophagy-related protein, γ-aminobutyric acid receptor-associated protein (Cq-GABARAP), that not only localized but also co-localized with WSSV on the Hpt cell membrane, strongly facilitated WSSV entry by binding to the viral envelope VP28 in a CME-dependent manner that was negatively regulated by Cq-Rac1. Furthermore, cytoskeletal components, including Cq-β-tubulin and Cq-β-actin, bound to both recombinant rCq-GABARAP and WSSV envelope proteins, which likely led to viral entry promotion via cooperation with rCq-GABARAP. Even under conditions that promoted viral entry, rCq-GABARAP significantly reduced viral replication at an early stage of infection, which was probably caused by the formation of WSSV aggregates in the cytoplasm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935888PMC
http://dx.doi.org/10.1038/srep28694DOI Listing

Publication Analysis

Top Keywords

viral entry
16
hpt cell
12
white spot
8
spot syndrome
8
syndrome virus
8
multiple endocytic
8
endocytic routes
8
cme-dependent manner
8
entry
7
viral
7

Similar Publications

Modulating cell endocytosis activity to reduce host susceptibility to virus represents a promising strategy for antiviral drug development. In this study, we reveal that lactate transporter SLC16A3 is a critical host factor for reducing diverse virus invasion. By performing metabolomics, proteomics, and thermal proteome profiling experiments, AP1G1, a pivotal protein involved in cellular endocytosis, was indiscriminately screened as a chaperone of SLC16A3.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) imposes substantial economic losses on global swine production. While modified live vaccines remain the primary prevention tool, their efficacy is compromised by the genetic variability of PRRSV. This study developed a broadly neutralizing monoclonal antibody (mAb) that targets a conserved viral epitope as an alternative therapeutic strategy.

View Article and Find Full Text PDF

A metagenomic approach for microbial risk assessment and source attribution in high-risk ports of entry environments.

Biosaf Health

August 2025

NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.

The epidemiological characteristics of emerging infectious disease outbreaks in recent years have underscored the critical importance of controlling imported infectious diseases. In this study, we implemented dynamic tracking of microbial invasions by monitoring environmental microbes at the customs and ports. From July to September 2024, a total of 126 environmental samples were collected from three ports of entry in Shenzhen, China.

View Article and Find Full Text PDF

Introduction: Interferon-induced transmembrane proteins (IFITMs) inhibit the entry of diverse enveloped viruses. The spectrum of antiviral activity of IFITMs is largely determined by their subcellular localization. IFITM1 localizes to and primarily blocks viral fusion at the plasma membrane, while IFITM3 prevents viral fusion in late endosomes by accumulating in these compartments.

View Article and Find Full Text PDF

Blockade of metastasis by targeting circulating tumor cells with platelet encapsuled oncolytic adenovirus.

Biomaterials

September 2025

Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China. Electronic address:

Host immune elimination largely limits the application of oncolytic viruses in clinics. Here, we rationally design a bioactive platelet-based oncolytic adenovirus delivery system. Upon loading adenoviruses, platelets are transformed to a pro-endocytosis status, which facilitates their internalization by circulating tumor cells (CTCs).

View Article and Find Full Text PDF