98%
921
2 minutes
20
Objective: Systemic juvenile idiopathic arthritis (JIA) is an inflammatory disease of childhood in which cells of the monomyelocytoid lineage are thought to be key effector cells. Monocytes from patients with systemic JIA have a distinct phenotype, with features of both M1 and M2 alternative activation. MicroRNAs are critical regulators of monocyte polarization and function, but cellular microRNAs in systemic JIA have not been examined systematically.
Methods: MicroRNA TaqMan arrays were used to determine the expression profiles of monocytes from children with systemic JIA. Expression of microRNA-125a-5p (miR-125a-5p) and its contribution to monocyte polarization were examined using in vitro-polarized THP-1 cells and primary human monocytes.
Results: A total of 110 microRNAs were found to be differentially expressed in monocytes from patients with active systemic JIA, including molecules implicated in rheumatoid arthritis pathogenesis, cytokine production, and monocyte polarization. MicroRNA-125a-5p was identified as being highly up-regulated in monocytes from children with active systemic JIA, as compared to those from children with clinically inactive JIA or those with active polyarticular JIA, and correlated with systemic features of the disease. In vitro, monocyte miR125a-5p expression was increased after polarization under M2b or M2c conditions. Inhibition of miR-125a-5p showed that this microRNA contributed to full polarization of M2b regulatory macrophages. In contrast, miR-125a-5p overexpression enhanced M2b polarization and altered other polarized populations, including increasing the production of M2 markers. Indeed, in vitro overexpression of this microRNA altered the macrophage phenotype toward that observed in systemic JIA.
Conclusion: Children with active systemic JIA have profound alterations in the expression of microRNAs that are implicated in monocyte function and polarization. One of these microRNAs, miR-125a-5p, is also a regulator of immunoregulatory M2b macrophages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001902 | PMC |
http://dx.doi.org/10.1002/art.39694 | DOI Listing |
J Am Chem Soc
September 2025
Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Academy for Advanced Interdisciplinary Studies, Nankai University, Tianjin 300071, PR China.
Antigen-capturing nanomaterials hold great promise for cancer immunotherapy; however, the need for tumor localized administration and limited antigen-binding affinity remains the "Achilles heel" of this strategy. Herein, we present a tumor microenvironment (TME)-activatable nanoplatform, TDR848@FPB, designed for systemic administration and enhanced covalent capture of tumor-associated antigens (TAAs), enabling effective immunotherapy with minimal off-target effects and independent of localized tumor administration. This platform encapsulates a photosensitizer-conjugated, light-activated toll-like receptor (TLR) agonist, which induces immunogenic cell death and triggers a pro-inflammatory TME conducive to antigen capture upon light irradiation.
View Article and Find Full Text PDFNano Lett
September 2025
Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.
Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.
View Article and Find Full Text PDFNatl Sci Rev
September 2025
School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China.
The role of cholesterol metabolism in antiviral immunity has been established, but if and how this cholesterol-mediated immunometabolism can be regulated by specific small molecules is of particular interest in the quest for novel antiviral therapeutics. Here, we first demonstrate that NPC1 is the key cholesterol transporter for suppressing viral replication by changing cholesterol metabolism and triggering the innate immune response via systemic analyses of all possible cholesterol transporters. We then use the Connectivity Map (CMap), a systematic methodology for identifying functional connections between genetic perturbations and drug actions, to screen NPC1 inhibitors, and found that bis-benzylisoquinoline alkaloids (BBAs) exhibit high efficacy in the inhibition of viral infections.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
Introduction: Oral squamous cell carcinoma (OSCC) has a poor prognosis due to its immunosuppressive tumor microenvironment (TME), in which tumor-associated macrophages (TAMs) play a pivotal role in promoting disease progression and therapeutic resistance. This study examines whether Prussian blue nanoparticles (PB NPs) could reprogram TAMs and block tumor-stroma communication in OSCC.
Methods: PB NPs were synthesized using polyvinylpyrrolidone-assisted coprecipitation and characterized by transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy.