Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sulfur mustard (SM) is one of the most dangerous chemical compounds used against humans, mostly at war conditions but also in terrorist attacks. Even though the sulfur mustard has been synthesized over a hundred years ago, some of its molecular properties are not yet resolved. We investigate the structural flexibility of the SM molecule in the gas phase by Car-Parrinello molecular dynamics simulations. Thorough conformation analysis of 81 different SM configurations using density functional theory is performed to analyze the behavior of the system at finite temperature. The conformational diversity is analyzed with respect to the formation of intramolecular blue-shifting CH⋯S and CH⋯Cl hydrogen bonds. Molecular dynamics simulations indicate that all structural rearrangements between SM local minima are realized either in direct or non-direct way, including the intermediate structure in the last case. We study the lifetime of the SM conformers and perform the population analysis. Additionally, we provide the anharmonic dynamical finite temperature IR spectrum from the Fourier Transform of the dipole moment autocorrelation function to mimic the missing experimental IR spectrum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2015.12.027DOI Listing

Publication Analysis

Top Keywords

sulfur mustard
12
finite temperature
12
molecular dynamics
12
dynamics simulations
12
structural flexibility
8
car-parrinello molecular
8
flexibility sulfur
4
mustard molecule
4
molecule finite
4
temperature car-parrinello
4

Similar Publications

Dual-responsive fluorescent sensors for the detection and discrimination of sulphur and nitrogen mustards.

Analyst

September 2025

Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.

Mustard agents, including sulphur mustard (SM) and nitrogen mustard (NM), are chemical warfare agents that can cause blistering of the skin and mucous membranes upon contact. Although SM and NM both have dermal effects, their medical management of systemic poisoning differs significantly. A rapid and simple method for detecting and discriminating between SM and NM would be greatly valuable.

View Article and Find Full Text PDF

Evaluation of novel surfactants for the decontamination of chemical warfare agents.

Toxicol Mech Methods

September 2025

Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, Hradec Kralove, University of Defence, Brno, Czech Republic.

The decontamination of chemical warfare agents or compounds involved in chemical industry incidents poses a significant challenge to environmental protection and human health. These compounds are highly toxic and could be relatively resistant to conventional decontamination methods. In recent years, surfactants have emerged as a promising option, as they can enhance the solubility of organophosphorus compounds in aqueous solutions while promoting their degradation or adsorption onto surfaces.

View Article and Find Full Text PDF

Porous Janus membrane for ultrasensitive detection and efficient degradation of sulfur mustard simulant.

J Hazard Mater

August 2025

Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, China. Electronic address:

The development of integrated systems for simultaneous chemical threat detection and decontamination is hindered by inherent sensitivity-efficiency trade-offs. We address this challenge through interfacial engineering of a Janus membrane combining D-A molecule functionalized MOFs with PDMS. A gas-liquid interfacial self-assembly strategy enables the creation of a microporous PDMS top layer for vapor preconcentration and vertically aligned MOF nanochannels (2.

View Article and Find Full Text PDF

Objectives: Pathomechanisms of sulfur mustard (SM) are not fully understood, and no specific medical countermeasures exist to prevent SM-induced pulmonary injury. This study aimed to evaluate the apoptosis following SM-induced acute pulmonary injury.

Materials And Methods: Acute pulmonary injury models were established using SM at an equivalent toxicity dose (1 LD50), administered via intraperitoneal injection or intratracheal instillation.

View Article and Find Full Text PDF

Sulfur mustard (SM), a chemical warfare agent, inflicts severe acute and chronic health effects. This study investigates the impact of SM-induced oxidative stress on telomere length (TL) and shelterin gene expression, which are crucial for telomere maintenance in exposed veterans. This study involved SM-exposed veterans and non-exposed controls.

View Article and Find Full Text PDF